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Decision Tree
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Random Forest (RF) of Breimann (2001)

–> Want to learn the conditional expectation of Y ∈ R given covariates
X ∈ Rp from i.i.d observations (Y1,X1), . . . , (Yn,Xn)

–> Two steps:
1. Construct a forest with N trees
2. Predict for a test point x
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1. Forest construction

–> Fit N trees
–> Each tree splits the Y′is according to some rule depending on the

covariates.
–> Conventional RF uses the CART criterion, which compares the means of Y

in the two child nodes.
–> The split is taken where the squared difference in means is maximized.
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2. Prediction

–> Drop test point x in all trees k = 1, . . . ,N
–> Let Lk(x) be the leaf where it falls.
–> Average all Yi for i ∈ Lk(x) to get a prediction for each tree
–> Average over all N trees
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State-of-the-Art performance on Tabular Data
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Distributional Random Forest (DRF)

–> Let’s say we want to predict at x
–> RF implicitly also produces weights wi(x), i = 1, . . . ,n, indicating the

importance of point i for this prediction:

wi(x) =
1

N

N∑
k=1

1{Xi ∈ Lk(x)}
#Lk(x)

–> Can write the prediction as

Ê[Y | X = x] =
n∑

i=1

wi(x)Yi.

=⇒ RF is a nearest neighborhood method with a data-adaptive notion of
neighborhood.
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Distributional Random Forest (DRF)

–> Can use the weights to approximate other things than conditional
expectations

–> Example: Conditional quantiles [Meinshausen, 2006]
–> However, doing this it might make sense to adapt the splitting criterion!
–> Generalized Random Forest (GRF) of [Athey et al., 2019]: Define an

estimation target and adapt the splitting criterion by this target
–> DRF: Define one splitting criterion that makes sense for many targets.
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CART

CART criterion:

min
splits

1

nP

∑
i∈CL

(Yi − YL)2 +
∑
i∈CR

(Yi − YR)2
 (1)

is equivalent to

max
splits

nLnR
n2P

 1

nL

∑
i∈CL

Yi −
1

nR

∑
i∈CR

Yi

2

. (2)

=⇒ Splits are chosen to make the means in the child nodes as different as
possible.
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Splitting Criteria

–> RF: nLnR
n2P

(
ȲL − ȲR

)2
–> GRF: nLnR

n2P
(τ̂L − τ̂R)

2

Idea of DRF: Do CART but with means in a Reproducing Kernel Hilbert space
(RKHS)!
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MMDCriterion

Idea of DRF: Do CART but with means in a Reproducing Kernel Hilbert space
(RKHS)!
–> RKHS H is a Hilbert-space defined by a kernel k : Rd × Rd → R
–> Any probability measure P can be mapped to an expectation in H!
–> For certain choices of k learning this expectation is akin to learning the

distribution!
–> This is the idea of DRF: We use CART in H and estimate the conditional

expectation in H.
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MMDCriterion

–> Let Φ be the function that takes a probability measures and maps it into
H.

–> For the dirac measure Φ(δYi) = k(Yi, ·):

max
split

nLnR
n2P

∥∥∥∥∥∥Φ
 1

|nL|
∑
i∈CL

δYi

− Φ

 1

|nR|
∑
i∈CR

δYi

∥∥∥∥∥∥
2

H

=

max
split

nLnR
n2P

∥∥∥∥∥∥ 1

|nL|
∑
i∈CL

k(Yi, ·)−
1

|nR|
∑
i∈CR

k(Yi, ·)

∥∥∥∥∥∥
2

H

=⇒ Splits are chosen to make the means in the child nodes as different as
possible, but now in the Hilbert Space.
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DRF Estimator

–> As a consequence, we get an estimate of the conditional mean
embedding (CME)

µ(x) = Φ(PY|X=x) = E[k(Y, ·) | X = x]

–> This has the form

µ̂n(x) =
n∑

i=1

wi(x)k(Yi, ·) ∈ H

–> This can easily be translated back into the empirical distribution:

P̂Y|X=x =

n∑
i=1

wi(x)δYi

–> Access to P̂Y|X=x is nice because a large range of targets can be calculated
from it!
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DRF Estimator: Summary

–> i.i.d data (Y1,X1), . . . , (Yn,Xn), Y ∈ Rd and X ∈ Rp

–> Random Forest (RF) is a powerful tool to estimate Ê[Y | X = x], for d = 1

–> Idea of DRF: Use a RF in a Reproducing Kernel Hilbert space (RKHS) H
–> Learning the conditional expectation in this space

= Learning a representation of the conditional distribution PY|X=x

–> Resulting estimate can be conveniently written as

P̂Y|X=x =
n∑

i=1

wi(x)δYi

with weights wi(x), i = 1, . . . ,n, indicating the importance of point i
–> This also works when Y takes values in Rd, for d > 1!
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DRF Estimator for a target τ
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DRF Estimator

Y = (O3, SO2,PM2.5), X = (longitude, latitude,elevation, location setting, ...)
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Example: Fairness

Warning:
The following analysis is for illustration purposes only and should not be
repeated unsupervised. Side effects include overconfidence in nonexisting

effects. Please refer to your local statistician for further information.
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Example: Fairness

–> Is observed gender gap in wage due to gender alone, or can it be
explained by other factors (e.g. different industries)?

–> Want to find the distribution of the nested counterfactual

W(male,X(female)),
women’s wage had they been treated the same way as men for setting
the wage

P (W(male, X(female))) =
∫

P (W | G = male, X = x)P(X = x | G = female)dx,

(3)

Gender

X

Wage
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Example: Fairness
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Theoretical View

–> To recap, DRF estimates the mean µ(x) = E[k(Y, ·) | X = x] in the Hilbert
space, as

µ̂n(x) =
n∑

i=1

wi(x)k(Yi, ·) ∈ H.

–> Though H is an infinite-dimensional Hilbert space for the “interesting”
choices of k, µ̂n(x) can be thought of as a weighed mean in Euclidean
space!

–> Can we have a consistency or even asymptotic normality result?
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Result

Theorem
Assume a certain list of conditions holds. Then, there exists σn > 0, σn → 0, such
that

1

σn
(µ̂n(x)− µ(x)) D→ N(0,Σx), (4)

where Σx is a self-adjoint HS operator satisfying

⟨Σxf, f⟩ =
V(⟨k(Y, ·), f⟩|X = x)
V(k(Y, ·)|X = x)

> 0 (5)

for all f ∈ H.
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Consequence

–> We thus have an idea about the asymptotic distribution of our estimator
–> In particular,

(I) For any smooth enough functional F : H → Rq,

1

σn
(F(µ̂n(x))− F(µ(x)))

is asymptotically normal
(II) For any continuous functional F : H → Rq,

F
(

1

σn
(µ̂n(x)− µ(x))

)
D→ F(N(0,Σx))
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Consequence

–> (I) Motivates the approximation of the sampling distribution of targets

τ(P̂Y|X=x) = F(µ̂n(x)),

such as
- conditional means
- conditional quantiles
- conditional variance-covariance matrices

by a normal distribution (even though depending on the kernel these
might not be smooth enough functions (!))
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Figure: Simulated Example with d = 2, p = 2. The histogram shows estimated values
minus truth, standardized by the estimated standard deviation, for 500 repetitions.
Left: Conditional Expectation of Y1, Right: Conditional Covarance between Y1, Y2.



Consequence

–> (II) is used to approximate the distribution of∥∥∥∥ 1

σn
(µ̂n(x)− µ(x))

∥∥∥∥2
H
,

which can be used to build simultaneous CIs around µ̂n(x)(y), see later

32



Problem

–> The abstract result above doesn’t really help us in approximating the
asymptotic distributions

–> For (I) we lack estimates of variances, for (II) there is not even a tractable
way of writing the asymptotic distribution (∥N(0,Σx)∥2H)

–> Solution: Subsample the subsampling!
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Solution

–> Instead of just fitting N trees to build our forest, we build B groups of L
trees (such that N = B ∗ L).

–> For each group of trees or mini forests, we subsample at random about
half of the data points and then fit the forest using only this subsample.

–> Let’s call this subset of samples chosen S
–> For each drawn S, we then get another DRF estimator in the Hilbert

space denoted µ̂S
n (x)
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Solution

–> Thus we have B groups of trees resulting in the estimators
µ̂S1
n (x), . . . , µ̂SB

n (x).
–> The overall estimate can be build out of the average of those B

estimators:

µ̂n(x) =
1

B

B∑
b=1

µ̂
Sb
n (x)

–> The B draws can be used to approximate aspects of the sampling
distribution.
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Result

Theorem
Assume the same list of conditions hold. Then

ξSn =
1

σn

(
µ̂S
n (x)− µ̂n(x)

) D−→
W

N(0,Σx) (6)

holds.

–> Such results are typical in Bootstrap arguments
–> In words: For fixed data, only considering the randomness of S,

µ̂S
n (x)− µ̂n(x), appropriately scaled, is asymptotically normal.
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Result

2 main insights:
1. Given the data and only considering the randomness of S,

1

σn

(
µ̂S
n (x)− µ̂n(x)

)
has the same distributional limit as

1

σn
(µ̂n(x)− µ(x))

2. We can simulate from the former distribution by drawing S!
=⇒We can approximate the (asymptotic) distribution of µ̂n(x) by simulating
µ̂S
n (x) B times!
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Full algorithm

Thus, with our new methodology, we get in one fell swoop:
–> The estimate µ̂n(x) that can be translated back into an estimate of the

conditional distribution P̂Y|X=x

–> An i.i.d. sample from the sampling distribution µ̂S1
n (x), . . . , µ̂SB

n (x)

• Complexity of this approach is (almost) the same as for the original
Random Forest: O(B× N× p× n logn) (!)

• However, need a lot of trees (large N)
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Figure: Histogram of the simulated conditional distribution overlaid with the true
density (in red). Additionally, the estimated conditional expectation and the
conditional (0.05, 0.95) quantiles are in blue, with true values in red. Moreover, the
dashed red lines are the confidence intervals for the estimates as calculated by DRF.
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Variable Importance in RF

–> Since their inception RFs were able to provide a notion of importance of
the features in X

–> Until recently these were mostly Mean Decrease Accuracy (MDA) and
Mean Decrease Impurity (MDI)

–> Recently there has been renewed interest in such variable importance
measures for nonparametric models

–> In particular, [Bénard et al., 2022] demonstrate the inconsistency of the
classical importance measures for RF and develop a principled variable
importance measure (“Sobol-MDA”)
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Importancemeasure for Distributional Prediction

–> We would like to define a meaningful notion of variable importance for
DRF

–> Previous measures, such as (Sobol-)MDA, are designed for conditional
expectation estimation

–> Idea adapted from [Da Veiga, 2021]: Measure the distance of
µ(X(−j)), the estimate when variable Xj is removed
µ(X), the estimate with all variables

to obtain:

I(j) =
E[∥µ(X)− µ(X(−j))∥2H]
E[∥µ(X)− E[µ(X)]∥2H]

(7)
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Importancemeasure for Distributional Prediction

Alternative Formulation: Measure the distance of
• PY|X(−j) , the estimate when variable Xj is removed
• PY|X, the estimate with all variables

to obtain:

I(j) =
E[MMD2(PY|X,PY|X(−j))]

E[MMD2(PY,PY|X)]
(8)
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Importancemeasure for Distributional Prediction

–> With DRF I(j) can easily be estimated by the drop-and-relearn principle:

–> Let µ̂n(x(−j)
i ) be the forest retrained with the jth variable (Xj) removed

–> Using an independent sample X′
1, . . .X′

n, we define

I(j)n =

∑n
i=1 ∥µ̂n(X′

i)− µ̂n(X′(−j)
i )∥2H∑n

i=1 ∥µ̂n(X′
i)− µn∥2H

. (9)

45



Importancemeasure for Distributional Prediction

–> Under relatively weak assumptions: I(j)n
p→ I(j)

–> Moreover, one can implement the projection approach of
[Bénard et al., 2022] to get a consistent estimator that is fast to compute,
even for large p
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Example

–> We simulate n = 1000 observations of (Yi,Xi)

–> We use 10-dimensional X, with Xi ∼ Unif(−1, 1), i = 1, 3, . . . , 10,
X3 = X1 + Unif(−1, 1)

–> We simulate the following dependent variable

Y ∼ N(0.8 · 1(X1 > 0), (1 + 1(X2 > 0))2) (10)

• Dependence between X1, X3
• Only X1 is relevant to estimate the conditional expectation
• Only X1, X2 are relevant to estimate the conditional distribution (quantiles
(!))
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Example

–> We use 10-dimensional X, with Xi ∼ Unif(−1, 1), i = 1, 3, . . . , 10,
X3 = X2 + Unif(−1, 1) and

Y ∼ N(0.8 · 1(X1 > 0), (1 + 1(X2 > 0))2) (11)

• Conditional Expectation: MDA of [Breiman, 2001] quantifies correctly
that X1 is most important, but considers X3 in second place

• Conditional Expectation: Sobol-MDA of [Bénard et al., 2022] quantifies
correctly that X1 is most important and all others are not relevant

• Conditional Distribution: I(j)n quantifies correctly that both X1 and X2 are
important and all others are not relevant.
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CurrentWork

–> Implementing the Missing Values Incorporated (MIA) method results,
DRF can be used even with missing values

–> Trying to theoretically guarantee asymptotic normality for a wide range
of targets.

–> Trying to improve sample efficiency, especially for uncertainty estimates
–> Trying new applications, such as weather prediction
–> Package needs a heavy update
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Software and Further reading

–> drf package on CRAN (works, but outdated)
–> Updated but poorly written code: https://github.com/JeffNaef/drfupdate
–> Medium Articles: https://medium.com/@jeffrey_85949
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