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Missing value

€ngth home_ownership annu:

loan_amnt term int_rate sub_grade emp c loan_status addr_state dtj mtl

be_open_to_buy be_util num_op_rev_tl

3600 36 months 14 10+ years MORTGAGE 550p0 Fully Paid PA 30 1506 37 4

24700 36 months 12 10+ years MORTGAGE 65090 Fully Paid sSD 19 57830 27 20

20000 60 months B4 10+ years MORTGAGE 63040 Fully Paid L 2737 56 4
60 months. cs 10+ years MORTGAGE Current NJ 54962 12 10

F1 3years MORTGAGE 104483 Fully Paid PA 78 7

c3 4 years RENT 34090 Fully Paid GA 91 4

B2 10+ years MORTGAGE Fully Paid MN 103 9

B1 10+ years MORTGAGE 85000 Fully Paid SC 6 3

A2 6 years RENT 85000 Fully Paid PA 50 13

B5 10+ years MORTGAGE 42000 Fully Paid Rl 35 10 39 9966 41 5

Figure: Source: Obtained from Medium


https://medium.com/@data.science.enthusiast/two-methods-for-handling-missing-values-with-python-as-a-complete-beginner-a749c4f50bc6
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I Basic Ideas

e There are many potential ways how to deal with missing values,
depending on the analysis

A very natural idea: Replace the missing values with “reasonable” values

This approach allows to do any further analysis (estimation/prediction) in
a second step

This is extremely common, especially also in machine learning

Imputing multiple times, it is even possible to get some idea of the
uncertainty coming from the missing values



I Basic Ideas

e The imputation literature is somewhat messy; new imputation methods
get developed left and right, seemingly without a common thread

o I will try here to develop a more systematic approach



I Objectives of this Talk

o In this talk, the focus will lie on general-purpose (multiple) imputation of
missing values

e While we will touch upon the more classical parametric ideas, the focus
will be on more modern views of imputation
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Figure: Illustration: X* is the assumed underlying full data, M is the vector of missing
indicators and X arises when M is applied to X.
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I Basic Framework

e We assume to observe ani.i.d. sample (X1,M;),...,(Xn,Mp) of n
observations.
e X; : Data Row i of dimension d with NAs, M; : vector in {0, 1}¢
Xi;j observed: M;; =0
X,"j = NA: MIJ =1
e Sinceit’s i.i.d. we can often simply consider one generic observation
(X, M).
e Conceptually we assume there is an X* with distribution P*, such that
Xij = Xi; whenever M;; = 0.
o Thus X* is the vector of true underlying values, and X is the observed
vector of values when X* gets masked by M.
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Figure: Illustration: X* is the assumed underlying full data, M is the vector of missing
indicators and X arises when M is applied to X.

o P refers to the distribution of X with missing values with density p

e P* ¢ P refers to the distribution of X* without missing values, with density
p*

o We let X be the imputed X with imputation distribution H, with density h.



I Two Views

e From the above: We have two random vectors (X, M) with a joint
distribution.

e There are two common ways to define/model this distribution: The
Selection Model (SM) and the Pattern Mixture Model (PMM):

Selection Model: p*(M =m,x) =P(M=m | x) - p*(x)
PMM Model: p*(M =m,x) = p*(x | M = m)P(M = m)

e SM view is most used, but especially for imputation, I find PMM much
more useful!
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I Notation

e Let M be the set of all possible missingness patterns m.

e For a missingness pattern m € M, o(x,m) = (Xj)je{l,...,d}:mjzo subsets the
observed elements of x according to m, while o¢(x,m) = (Xj)je{l,...,d}:m,:l,
subsets the missing elements.

13



I Notation

e Let M be the set of all possible missingness patterns m.

e For a missingness pattern m € M, o(x,m) = (Xj)je{l,...,d}:mjzo subsets the
observed elements of x according to m, while o¢(x,m) = (Xj)je{l,...,d}:m,:l,
subsets the missing elements.

X = (X17X27X3)X4)X5)7 m= (1) 1)0) ]-70)
= 0o(Xx,m) = (X3,X5)
== 0°(X,m) = (X1, X2,X4)
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I Missingness Mechanisms: SM

Selection Model: p*(M =m,x) =P(M=m | x) - p*(x)

¢ Missing Completely at Random (MCAR): The probability of an entry
being missing is completely independent of the data

¢ Missing at Random (MAR): The probability of an entry being missing
only depends on the observed values of the data

¢ Missing not at Random (MNAR): Everything goes

14
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I Formal MAR Definition Selection Model

Definition (SM-MAR)

The missingness mechanism is missing at random (MAR) if

P(M = m|x) =P(M = m|o(x,m)) forallm € M, x.

(1)
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I MAR Example

e Consider an example with two variables: X; being the logarithm of
income, and X; being age

e Assume a missing mechanism for the income X;, whereby X; tends to be
missing whenever age is “high”

== Thus the probability of income (X;) being missing depends entirely on the

value of age (X5), which is always observed.

e This results in two patterns, one where both variables are fully observed
(my) and a second (my), wherein X; is missing.

o If we assume that higher age is related to higher income, there is a clear
shift in the distribution of income and age when moving from one
pattern to the other.

V4
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I MAR Example

We could model this with the following Gaussian mixture model for two
patterns m; = (0,0) and ms = (1,0):

(X1, Xz) | M =, NN<<8) ’ G 1))
(X1, X2) | M = my N’V<® ’ G 1)) '

For both patterns, the conditional distribution of X; given Xs is given as
p(Xy | Xo,M =my) = p(x1 | Xo, M = my) = N(X2,1)(x1).

But the joint distribution of (X;, X,) is different in pattern m; thaniitisin
m2!

V4
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I Historic MAR

e MAR was originally introduced in the seminal paper of Rubin
[Rubin, 1976].

e There he proved an ignorability result: Under an important additional
condition, a parameter of interest can be found with maximum
likelihood, by only considering the observed part of the data

e Most lectures and books on missing values focus on this result, as it
allows one to completely ignore missing values in a maximum likelihood
context

e While it is an important result, it depends on strong parametric
assumptions and I personally feel it is somewhat outdated

v d
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o Need to make assumptions on X*/P* to make this possible
e In particular need assumptions on

p*(OC(X, m2) | O(X’ m2)7M = m,) = p*(Xl | X*ij = m,)a

form’ = my and m’ = ma,.



PMM Model : p*(M = m,x) = p*(x | M = m)P(M = m)

* * *

T Tz T 0 00 Tyl Ti2 T3
X" = w3, x5, T34 M=1|1 0 0 X=|NA x55
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I MAR Example

We could model this with the following Gaussian mixture model for two
patterns m; = (0,0) and ms = (1,0):

(X1, Xz) | M =, N’V((g) ’ G D)
(X1, X2) | M = my N’V<® : G 1)) '

For both patterns, the conditional distribution of X; given Xs is given as

pr(x1 | Xo,M=my) = p*(xy | Xe,M=my) = N(x2,1)(x1).

p*(0°(xm2) 0(x,m2) M=my1)  p* (0 (x,m2)|0(x,m2) M=m2)

V4
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PMM Model : p*(M =m,x) =p*(x | M = m)P(M =m)

L1,1 [ T1,2 T1,3

* T
X T2,1  T22 T23

3,1 | T31 T33

Definition

0 0 0
M=|1 0 0 X =
1 1 0

11 T1,2 T1,3
NA 35 w23
NA NA 3,3

The missingness mechanism is conditionally independent MAR (CIMAR) if

p*(0¢(x,m) | o(x,m),M =m’) = p*(0°(x,m) | o(x,m),M = m")
forallm m',m” € M, x.

(CIMAR)



PMM Model : p*(M =m,x) =p*(x | M = m)P(M = m)

L1,1  T1,2 T1,3
E3 T
X L2,1 ; T2,2 T23 M

0 0 T11 Ti2 T13
0 0 X=|NA z22 z23

Il
[N =)

p*(x1 | X2,X3,M = my) = p*(X1 | X2, X3, M = m3) = p*(x1 | X2,X3,M = m3)



PMM Model : p*(M =m,x) =p*(x | M = m)P(M = m)

* * | *
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p* (X1, X2 [ X3,M = my) = p*(X1, X2 | X3, M = mz) = p*(X1, X2 | X3, M = ms3)



PMM Model : p*(M =m,x) =p*(x | M = m)P(M = m)

* * *

Tip Tia Ti3 0 Ti1 Ti2 T13
X*= a5, w52 233 M = 0 X=|NA 135 @23
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Definition (PMM-MAR)

The missingness mechanism is missing at random (MAR) if

=)
o O

p*(OC(X, m) ’ O<X7m)7M = m) - p*(OC(X,m) ‘ O(X7m))
forallm e M, x. (PMM-MAR)



X*

PMM Model : p*(M =m,x) =p*(x | M = m)P(M = m)

T
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X* =

PMM Model : p*(M =m,x) =p*(x | M = m)P(M = m)

* * | *
Ti1 P12 (713

Ti,1 Ti12 T1,3

T2.3

0 0 0
T34 T3o  Thg M=(1 0 0 X=|NA x99
110 NA NA 134

* * !
T31 T31 ;L33
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I A More Elaborate Example

X1,1 X12 X13 0
X= X2.1 NA X23 |, M=10
NA X32 X33 1

whereby (X1, X2, X3) are independently uniforml
further specify that

0 m
0 ms

distributed on [0, 1]. We

< o = O

P(M:ml ‘X) :P(M:ml |X1) :X1/3

PM=my|Xx)=P(M=my|Xx1)=2/3—x1/3

P(M=ms3|x)=P(M=m3)=1/3.
SM-MAR:

- P(M = m|x) = P(M = m|o(x,m)) for allm € M, x.
&Z’Z&dz—
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Figure: Left: Distribution we would like to impute X; | M = m3. Middle: Distribution of
X; in the fully observed pattern (X; | M = my). Right: Distribution of all patterns for
which X is observed (Mixture of the distribution of X; in pattern 1 and 2).



I A More Elaborate Example

Figure: Even conditional distributions can change under MAR

e Under MAR, not only the distribution of observed variables can change
from pattern to pattern, but even o¢(X,m) | o(X,m).

¢ Nonetheless, if imputation is done iteratively, it recovers the correct
distributions under perfect estimation.

= FCS Approach!

v d
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I Imputation Approaches

V4

lr

e First, there are two broad classes of imputation approaches;

Joint Modeling (JM) methods that impute the data using one model:

Examples include parametric distributions [Schafer, 1997], and more
recently, Generative Adversarial Network (GAN)-based

([Yoon et al., 2018, Deng et al., 2022, Fang and Bao, 2023]) and
Variational Autoencoder (VAE)-based methods

([Mattei and Frellsen, 2019, Nazabal et al., 2020, Qiu et al., 2020,
Yuan et al., 2021])

Fully Conditional Specification (FCS) where a different model for
each dimension is trained [van Buuren, 2007, van Buuren, 2018]:
Most Prominent Example: Multiple Imputation by Chained Equations
(MICE) methodology [van Buuren and Groothuis-Oudshoorn, 2011]

e Here we focus on the FCS approach

7
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I FCS Imputation

e Letin the following forj € {1,...,d},

X=Xy -

¢ In the classical Fully Conditional Specification, we specify a probability
distribution p; for each X; | X_,.

e For several iterations we draw

(D)

® (®
(D O | 59,

where pj@ is updated/estimated in each iteration t.

v d
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Figure: Source: [van Buuren, 2018]



I 3 Lessons

e Lesson I: Imputation is a Generative Approach
e Lesson II: FCS might just work, but it is hard
e Lesson III: Imputation should be evaluated as a Generative Approach

38



I Lesson |: Imputation is a Generative Approach

e The question of what is a “reasonable” value for the missing value is the
question of what kind of imputation to use.

e In the FCS approach this corresponds to specifying p;
» Often p; is specified as a point measure

e Example: Methods that estimate E[X; | x(f}] on observed data points and
“draw”:

(t+1)
Xj ™ O

39
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I Lesson |: Imputation is a Generative Approach

e Example: Methods that estimate E[X; | x(_tj.] on observed data points and
“draw":

(t+1)
Xj T Oy

e While this can be good enough for certain applications, such as

prediction, here we aim higher.

== The ideal imputation should draw samples from the conditional
distribution of missing given observed: p*(o¢(x,m) | o(x,m)).

41



Regression Imputation Gaussian Imputation Truth

Figure: 5000 observations of the bivariate Gaussian Example with around 50% MCAR
missing values in X;.



I Lesson |: Imputation is a Generative Approach

== The ideal imputation should draw samples from the conditional
distribution of missing given observed: p*(o¢(x,m) | o(x,m)).
e In particular: We should not look for the best value to impute
e In other words: Imputation is not prediction.
e p;j should not be a point distribution, but as close as possible to the true
conditional distribution of X; | X_;.

34.14 34.1%

Figure: Source: Wikipedia
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https://en.wikipedia.org/wiki/Normal_distribution

Learn Conditional
Distribution p*( X; | X_;)

Impute by drawing X; ~ p*(X; | x;-;)

\

T P,
T2  T2,—j
Lm,—j

LTm+1,—j

Example: p1(x1 | X2) = N(Bxa,62)(x1)




I Multiple Imputation

e Another advantage of being able to draw from the conditional
distribution, is the ability to generate multiple imputations.

e This allows to factor in the additional uncertainty of the missing values.
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I Lesson Il: FCS might just work, but it is hard

e We have seen that distribution shifts are possible under MAR.

e In one example (age/income) only the marginal distributions shifted, but
in the second example, even the conditional distribution could shift!

e Nonetheless one can show that FCS identifies the right distributions.

lrezia—
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I Lesson Il: FCS might just work, but it is hard

Theorem

In a population setting (perfect estimation), FCS identifies the right distributions
under MAR.

e However, with finite sample we don't have perfect estimation, and
different imputation methods will perform differently.

e How do we even evaluate an imputation method?

47



I Lesson Ill: Imputation should be evaluated as a Generative
Approach

e A natural question is now, how we measure what is a “good” imputation
method.

e How do we rank imputation methods in practice?

e Imagine an academic setting where the true underlying values are
available

e In this scenario, researchers often use RMSE:

Z:\/Z(imputedu—true,‘z,-)2
i J

48



Regression Imputation Gaussian Imputation Truth

Figure: The imputation on the left has a lower RMSE than the imputation on the right



I Lesson Ill: Imputation should be evaluated as a Generative
Approach

e RMSE is minimized when we impute by the conditional expecation

e Instead we want a measure that is minimized when we draw from the
right conditional distributions

o If the true values are available, this can be achieved by a distributional
metric

e For instance we can estimate the energy distance between true and
imputed data set:

energy(H, P*) = 2E[|IX = Ylgs] — E[[IX — X'[|ga] — E[|lY = V'||a].

for X ~ P*, Y~ Hand X, Y an independent copy of X, Y.

v d
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I Lesson Ill: Imputation should be evaluated as a Generative
Approach

« For an imputation Xi, . .., X,, obtained from an imputation distribution H,
the energy distance energy(H, P*) can easily be estimated with the true

values Xj, ..., X}, from P*
e In R: Package energy

51



Regression Imputation Gaussian Imputation Truth

Figure: The imputation on the right has a lower energy distance than the imputation
on the left



I What is a good Imputation Method?

¢ So what should we take for p;?

e In the age of machine learning, we can specify p; as a method to estimate
p*(X; | x(f}) nonparametrically

e Forinstance, we can specify that for each j we estimate p*(x; | x(_tj.) using

an adaptation of Random Forest, the Distributional Random Forest (DRF)
of [Cevid et al., 2022] (“mice-DRF")

e This was also approximated earlier [Burgette and Reiter, 2010], using one
regression tree + sampling from the leaves (“mice-cart”)
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I What is a good Imputation Method?

¢ So what should we take for p;?

e Forinstance, we can specify that for each j we estimate p*(x; | x(_tj.) using
an a’daptation of Random Forest, the Distributional Random Forest (DRF)
of [Cevid et al., 2022] (“mice-DRF")

e This was also approximated earlier [Burgette and Reiter, 2010], using one
regression tree + sampling from the leaves (“mice-cart”)

e Though a proper study has yet to be done, prior analysis for tabular data
indicates that both methods are extremely hard to beat and in particular
outperform neural-net-based approaches!
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I What is a good Imputation Method?

An ideal imputation method should

(1) be a distributional regression method,

(2) be able to capture nonlinearities in the data,

(3) be fast to fit,

(4) be able to deal with distributional shifts in the observed variables.

15 T1,—j
Learn Conditional , -
X9 4 To _
Distribution p*( X; | X_;) 2,5 2,—j
g NA Tm,—j

Impute by drawing X; ~ p”(Xj | xiy,j)

NA pmir,—j




I What is a good Imputation Method?

An ideal imputation method should

(1) be a distributional regression method,

(2) be able to capture nonlinearities in the data,

(3) be fast to fit,

(4) be able to deal with distributional shifts in the observed variables.

e Though there is some indication that mice-DRF and mice-cart perform
extremely well, they only meet (1)-(3).

o missForest of [Stekhoven and Buhlmann, 2011], which was touted as an
extremely strong imputation method by several benchmarking studies,
only meets (2) and (3).

V4
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Figure: The true distribution against a draw from different imputation procedures for
imputing X; in the income/age example.
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I What if the underlying values are not available?

e The question of how to evaluate imputation methods becomes much
harder when the true underlying values are not available

e The energy distance is directly related to the energy score
[Gneiting and Raftery, 2007, Gneiting et al., 2008]:

1
es(H,y) = B[IIX = Ylze] = SEIIX = X[z,

where X ~ Hand X' ~ H is an independent copy.

3)
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I General Idea of Scores

e Proper scores have been an active area of research in the last decade

e Theidea is as important as it is simple: A proper score is minimized in
expectation (in a population setting) when one inserts the quantity
of interest

RMSE: Ey._p:[|lc — YH%‘,] is minimized when c is the expectation of Y.
MAE: Ey._p-[|c — Y|] is minimized when c is the median of Y.
Energy Score: Ey_p-[es(H,y)] is minimized when H = P*
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I General Idea of Scores

e The Energy score can be used to score distributional prediction

e Assume we have learned a distribution H based on n samples, from
which we can sample (for instance using DRF)

e We would like to test this distribution against a new test point y drawn
from P*

e Can use the Energy score:
1
SO H) = ExenlllX = Ylize] = SExnlliX = X [lre]
Theorem
In expectation, we score the true distribution lowest, i.e. :

S(P*,H) := Eyp+[S(Y, H)] > By p+[S(Y, P*)] := S(P*, P*)

lrrzca—
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neral Idea of Scores

e The Energy score can be used to score distributional prediction

e Assume we have learned a distribution H based on n samples, from
which we can sample (for instance using DRF)

We would like to test this distribution against a new test point y
Can use the Energy score:

1
SO H) = ExeilIX = Yira] = SExwnlIX = X|le]

If we can sample from H, S(y, H) can be easily approximated!

zea—
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I Imputation Scores

e Prefers to the distribution of X with missing values

e P* € P refers to the distribution of X* without missing values.

e H refers to an imputation distribution.

Definition (Proper Imputation Score (I-Score))

A real-valued function Sy (H, P) is a proper I-Score iff
Sna(H, P) < Sna(P*, P),

for any imputation distribution H.

v d
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I Imputation Scores

e For this to work under the challenging MAR setting we unfortunately
need to have a set of variables that is always observed.

e Lets call this set O, i.e. for allj € O, m; = 0 for allm ¢ M

e A score that does not need that is also available and seems to work
exceedingly well, but without theoretical guarantees.
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Figure: Illustration of the new scoring method. The PMM view shows that only certain
conditional distributions can be compared under MAR. This is what we utilize here.



I Score Estimation

e L All patterns in M with m; = 1 (i.e. all possible pattern in which X; is
observed)

(5(5/)), I=1,...,Nsample generated from the conditional imputation
distribution Hy,

. N N
SJNA(H’P):W Z( g; X(I lr — NZHX(I XIJHR)

j| /:m/GLj

Estimated Energy Score with predictive distribution
represented by (5(/(’)), and test point x; ;

Final score, S§},(H, P), is the average of 3’)\,A(H, P) over .
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I Propriety

Theorem

Assume MAR in (PMM-MAR) holds and that O is not empty. Then the population
version Sy, (H, P) is a proper I-Score.
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Figure: Left: Ordering of the I-score, Right: Ordering of the (negative) energy
distance. The latter uses the true underlying values.
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I Conclusion

e This talk discussed the PMM view of missingness that helps understand
imputation under MAR

e We discussed 4 points the ideal imputation method should meet and
potential ways to evaluate imputation methods

e Despite intensive research, the quest for an imputation method meeting
all 4 points is still open

e We discussed the Imputation Scores and looked at a new score that is
proper under MAR
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