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Figure: Source: Obtained from Medium

https://medium.com/@data.science.enthusiast/two-methods-for-handling-missing-values-with-python-as-a-complete-beginner-a749c4f50bc6




Basic Ideas

• There are many potential ways how to deal with missing values,
depending on the analysis

• A very natural idea: Replace the missing values with “reasonable” values
• This approach allows to do any further analysis (estimation/prediction) in
a second step

• This is extremely common, especially also in machine learning
• Imputing multiple times, it is even possible to get some idea of the
uncertainty coming from the missing values
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Basic Ideas

• The imputation literature is somewhat messy; new imputation methods
get developed left and right, seemingly without a common thread

• I will try here to develop a more systematic approach
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Objectives of this Talk

• In this talk, the focus will lie on general-purpose (multiple) imputation of
missing values

• While we will touch upon the more classical parametric ideas, the focus
will be on more modern views of imputation
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Figure: Illustration: X∗ is the assumed underlying full data,M is the vector of missing
indicators and X arises whenM is applied to X.



Basic Framework

• We assume to observe an i.i.d. sample (X1,M1), . . . , (Xn,Mn) of n
observations.

• Xi : Data Row i of dimension d with NAs, Mi : vector in {0, 1}d

Xi,j observed: Mi,j = 0
Xi,j = NA: Mi,j = 1

• Since it’s i.i.d. we can often simply consider one generic observation
(X,M).

• Conceptually we assume there is an X∗ with distribution P∗, such that
Xi,j = X∗i,j, whenever Mi,j = 0.

• Thus X∗ is the vector of true underlying values, and X is the observed
vector of values when X∗ gets masked by M.
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Figure: Illustration: X∗ is the assumed underlying full data,M is the vector of missing
indicators and X arises whenM is applied to X.

• P refers to the distribution of X with missing values with density p
• P∗ ∈ P refers to the distribution of X∗ without missing values, with density

p∗

• We let X̃ be the imputed X with imputation distribution H, with density h.



Two Views

• From the above: We have two random vectors (X,M) with a joint
distribution.

• There are two common ways to define/model this distribution: The
Selection Model (SM) and the Pattern Mixture Model (PMM):

Selection Model: p∗(M = m, x) = P(M = m | x) · p∗(x)
PMMModel: p∗(M = m, x) = p∗(x | M = m)P(M = m)

• SM view is most used, but especially for imputation, I find PMMmuch
more useful!
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Notation

• LetM be the set of all possible missingness patternsm.
• For a missingness patternm ∈ M, o(x,m) = (xj)j∈{1,...,d}:mj=0 subsets the
observed elements of x according tom, while oc(x,m) = (xj)j∈{1,...,d}:mj=1,

subsets the missing elements.

x = (x1, x2, x3, x4, x5), m = (1, 1, 0, 1, 0)

=⇒ o(x,m) = (x3, x5)
=⇒ oc(x,m) = (x1, x2, x4)
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MissingnessMechanisms: SM

Selection Model: p∗(M = m, x) = P(M = m | x) · p∗(x)

• Missing Completely at Random (MCAR): The probability of an entry
being missing is completely independent of the data

• Missing at Random (MAR): The probability of an entry being missing
only depends on the observed values of the data

• Missing not at Random (MNAR): Everything goes
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Figure: Gravity Score is always observed. From left to right: MCAR - MAR - MNAR



FormalMARDefinition SelectionModel

Definition (SM-MAR)
The missingness mechanism is missing at random (MAR) if

P(M = m|x) = P(M = m|o(x,m)) for allm ∈ M, x. (1)
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MARExample

• Consider an example with two variables: X1 being the logarithm of
income, and X2 being age

• Assume a missing mechanism for the income X1, whereby X1 tends to be
missing whenever age is “high”

=⇒ Thus the probability of income (X1) being missing depends entirely on the
value of age (X2), which is always observed.

• This results in two patterns, one where both variables are fully observed
(m1) and a second (m2), wherein X1 is missing.

• If we assume that higher age is related to higher income, there is a clear
shift in the distribution of income and age when moving from one
pattern to the other.
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MARExample

We could model this with the following Gaussian mixture model for two
patternsm1 = (0, 0) andm2 = (1, 0):

(X1, X2) | M = m1 ∼ N
((

0
0

)
,

(
2 1
1 1

))
(X1, X2) | M = m2 ∼ N

((
5
5

)
,

(
2 1
1 1

))
.

For both patterns, the conditional distribution of X1 given X2 is given as

p(x1 | x2,M = m1) = p(x1 | x2,M = m2) = N(x2, 1)(x1).

But the joint distribution of (X1, X2) is different in pattern m1 than it is in
m2!
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HistoricMAR

• MAR was originally introduced in the seminal paper of Rubin
[Rubin, 1976].

• There he proved an ignorability result: Under an important additional
condition, a parameter of interest can be found with maximum
likelihood, by only considering the observed part of the data

• Most lectures and books on missing values focus on this result, as it
allows one to completely ignore missing values in a maximum likelihood
context

• While it is an important result, it depends on strong parametric
assumptions and I personally feel it is somewhat outdated
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• Need to make assumptions on X∗/P∗ to make this possible
• In particular need assumptions on

p∗(oc(x,m2) | o(x,m2),M = m′) = p∗(x1 | x−j,M = m′),

form′ = m1 andm′ = m2.



PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)



MARExample

We could model this with the following Gaussian mixture model for two
patternsm1 = (0, 0) andm2 = (1, 0):

(X1, X2) | M = m1 ∼ N
((

0
0

)
,

(
2 1
1 1

))
(X1, X2) | M = m2 ∼ N

((
5
5

)
,

(
2 1
1 1

))
.

For both patterns, the conditional distribution of X1 given X2 is given as

p∗(x1 | x2,M = m1)︸ ︷︷ ︸
p∗(oc(x,m2)|o(x,m2),M=m1)

= p∗(x1 | x2,M = m2)︸ ︷︷ ︸
p∗(oc(x,m2)|o(x,m2),M=m2)

= N(x2, 1)(x1).
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PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition
The missingness mechanism is conditionally independent MAR (CIMAR) if

p∗(oc(x,m) | o(x,m),M = m′) = p∗(oc(x,m) | o(x,m),M = m′′)

for allm,m′,m′′ ∈ M, x. (CIMAR)



PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)

p∗(x1 | x2, x3,M = m1) = p∗(x1 | x2, x3,M = m2) = p∗(x1 | x2, x3,M = m3)



PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)

p∗(x1, x2 | x3,M = m1) = p∗(x1, x2 | x3,M = m2) = p∗(x1, x2 | x3,M = m3)



PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition (PMM-MAR)
The missingness mechanism is missing at random (MAR) if

p∗(oc(x,m) | o(x,m),M = m) = p∗(oc(x,m) | o(x,m))

for allm ∈ M, x. (PMM-MAR)



PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)

p∗(x1 | x2, x3,M = m2) = p∗(x1 | x2, x3)



PMMModel : p∗(M = m, x) = p∗(x | M = m)P(M = m)

p∗(x1, x2 | x3,M = m3) = p∗(x1, x2 | x3)



AMore Elaborate Example

X =

x1,1 x1,2 x1,3
x2,1 NA x2,3
NA x3,2 x3,3

 ,M =

0 0 0
0 1 0
1 0 0

 =

m1

m2

m3

 . (2)

whereby (X1, X2, X3) are independently uniformly distributed on [0, 1]. We
further specify that

P(M = m1 | x) = P(M = m1 | x1) = x1/3
P(M = m2 | x) = P(M = m2 | x1) = 2/3− x1/3
P(M = m3 | x) = P(M = m3) = 1/3.

SM-MAR:

P(M = m|x) = P(M = m|o(x,m)) for allm ∈ M, x.
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Figure: Left: Distribution we would like to impute X1 | M = m3. Middle: Distribution of
X1 in the fully observed pattern (X1 | M = m1). Right: Distribution of all patterns for
which X1 is observed (Mixture of the distribution of X1 in pattern 1 and 2).



AMore Elaborate Example

Figure: Even conditional distributions can change under MAR

• Under MAR, not only the distribution of observed variables can change
from pattern to pattern, but even oc(X,m) | o(X,m).

• Nonetheless, if imputation is done iteratively, it recovers the correct
distributions under perfect estimation.

=⇒ FCS Approach!
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Imputation Approaches

• First, there are two broad classes of imputation approaches;
Joint Modeling (JM)methods that impute the data using one model:
Examples include parametric distributions [Schafer, 1997], and more
recently, Generative Adversarial Network (GAN)-based
([Yoon et al., 2018, Deng et al., 2022, Fang and Bao, 2023]) and
Variational Autoencoder (VAE)-based methods
([Mattei and Frellsen, 2019, Nazábal et al., 2020, Qiu et al., 2020,
Yuan et al., 2021])
Fully Conditional Specification (FCS) where a different model for
each dimension is trained [van Buuren, 2007, van Buuren, 2018]:
Most Prominent Example: Multiple Imputation by Chained Equations
(MICE) methodology [van Buuren and Groothuis-Oudshoorn, 2011]

• Here we focus on the FCS approach
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FCS Imputation

• Let in the following for j ∈ {1, . . . ,d},

X−j = (Xl)l̸=j .

• In the classical Fully Conditional Specification, we specify a probability
distribution pj for each Xj | X−j.

• For several iterations we draw

x(t+1)
j ∼ p(t)j (xj | x

(t)
−j),

where p(t)j is updated/estimated in each iteration t.
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Figure: Source: [van Buuren, 2018]



3 Lessons

• Lesson I: Imputation is a Generative Approach
• Lesson II: FCS might just work, but it is hard
• Lesson III: Imputation should be evaluated as a Generative Approach
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Lesson I: Imputation is a Generative Approach

• The question of what is a “reasonable” value for the missing value is the
question of what kind of imputation to use.

• In the FCS approach this corresponds to specifying pj

• Often pj is specified as a point measure

• Example: Methods that estimate E[Xj | x
(t)
−j ] on observed data points and

“draw”:

x(t+1)
j ∼ δE[Xj|x

(t)
−j ]

.
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Lesson I: Imputation is a Generative Approach

• Example: Methods that estimate E[Xj | x
(t)
−j ] on observed data points and

“draw”:

x(t+1)
j ∼ δE[Xj|x

(t)
−j ]

.

• While this can be good enough for certain applications, such as
prediction, here we aim higher.

=⇒ The ideal imputation should draw samples from the conditional
distribution of missing given observed: p∗(oc(x,m) | o(x,m)).

41



Figure: 5000 observations of the bivariate Gaussian Example with around 50% MCAR
missing values in X1.



Lesson I: Imputation is a Generative Approach

=⇒ The ideal imputation should draw samples from the conditional
distribution of missing given observed: p∗(oc(x,m) | o(x,m)).

• In particular: We should not look for the best value to impute
• In other words: Imputation is not prediction.
• pj should not be a point distribution, but as close as possible to the true
conditional distribution of Xj | X−j.

Figure: Source: Wikipedia
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Example: p1(x1 | x2) = N(β̂x2, σ̂2)(x1)



Multiple Imputation

• Another advantage of being able to draw from the conditional
distribution, is the ability to generatemultiple imputations.

• This allows to factor in the additional uncertainty of the missing values.
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Lesson II: FCSmight just work, but it is hard

• We have seen that distribution shifts are possible under MAR.
• In one example (age/income) only the marginal distributions shifted, but
in the second example, even the conditional distribution could shift!

• Nonetheless one can show that FCS identifies the right distributions.
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Lesson II: FCSmight just work, but it is hard

Theorem
In a population setting (perfect estimation), FCS identifies the right distributions
under MAR.

• However, with finite sample we don’t have perfect estimation, and
different imputation methods will perform differently.

• How do we even evaluate an imputation method?
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Lesson III: Imputation should be evaluated as a Generative
Approach

• A natural question is now, how we measure what is a “good” imputation
method.

• How do we rank imputation methods in practice?
• Imagine an academic setting where the true underlying values are
available

• In this scenario, researchers often use RMSE:∑
i

√∑
j

(imputedi,j − truei,j)2
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Figure: The imputation on the left has a lower RMSE than the imputation on the right



Lesson III: Imputation should be evaluated as a Generative
Approach

• RMSE is minimized when we impute by the conditional expecation
• Instead we want a measure that is minimized when we draw from the
right conditional distributions

• If the true values are available, this can be achieved by a distributional
metric

• For instance we can estimate the energy distance between true and
imputed data set:

energy(H,P∗) = 2E[∥X− Y∥Rd ]− E[∥X− X′∥Rd ]− E[∥Y− Y′∥Rd ],

for X ∼ P∗, Y ∼ H and X′, Y′ an independent copy of X, Y.
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Lesson III: Imputation should be evaluated as a Generative
Approach

• For an imputation X̃1, . . . , X̃n, obtained from an imputation distribution H,
the energy distance energy(H,P∗) can easily be estimated with the true
values X∗1, . . . , X∗n from P∗

• In R: Package energy
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Figure: The imputation on the right has a lower energy distance than the imputation
on the left



What is a good ImputationMethod?

• So what should we take for pj?
• In the age of machine learning, we can specify pj as a method to estimate

p∗(xj | x
(t)
−j) nonparametrically

• For instance, we can specify that for each j we estimate p∗(xj | x
(t)
−j) using

an adaptation of Random Forest, the Distributional Random Forest (DRF)
of [Ćevid et al., 2022] (“mice-DRF”)

• This was also approximated earlier [Burgette and Reiter, 2010], using one
regression tree + sampling from the leaves (“mice-cart”)
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What is a good ImputationMethod?

• So what should we take for pj?

• For instance, we can specify that for each j we estimate p∗(xj | x
(t)
−j) using

an adaptation of Random Forest, the Distributional Random Forest (DRF)
of [Ćevid et al., 2022] (“mice-DRF”)

• This was also approximated earlier [Burgette and Reiter, 2010], using one
regression tree + sampling from the leaves (“mice-cart”)

• Though a proper study has yet to be done, prior analysis for tabular data
indicates that both methods are extremely hard to beat and in particular
outperform neural-net-based approaches!
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What is a good ImputationMethod?

An ideal imputation method should
(1) be a distributional regression method,
(2) be able to capture nonlinearities in the data,
(3) be fast to fit,
(4) be able to deal with distributional shifts in the observed variables.
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What is a good ImputationMethod?

An ideal imputation method should
(1) be a distributional regression method,
(2) be able to capture nonlinearities in the data,
(3) be fast to fit,
(4) be able to deal with distributional shifts in the observed variables.
• Though there is some indication thatmice-DRF andmice-cart perform
extremely well, they only meet (1)-(3).

• missForest of [Stekhoven and Bühlmann, 2011], which was touted as an
extremely strong imputation method by several benchmarking studies,
only meets (2) and (3).
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Figure: The true distribution against a draw from different imputation procedures for
imputing X1 in the income/age example.
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What if the underlying values are not available?

• The question of how to evaluate imputation methods becomes much
harder when the true underlying values are not available

• The energy distance is directly related to the energy score
[Gneiting and Raftery, 2007, Gneiting et al., 2008]:

es(H, y) = E[∥X− y∥Rd ]−
1

2
E[∥X− X′∥Rd ], (3)

where X ∼ H and X′ ∼ H is an independent copy.
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General Idea of Scores

• Proper scores have been an active area of research in the last decade
• The idea is as important as it is simple: A proper score is minimized in
expectation (in a population setting) when one inserts the quantity
of interest

RMSE: EY∼P∗ [∥c− Y∥2Rd ] is minimized when c is the expectation of Y.
MAE: EY∼P∗ [|c− Y|] is minimized when c is the median of Y.
Energy Score: EY∼P∗ [es(H, y)] is minimized when H = P∗
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General Idea of Scores

• The Energy score can be used to score distributional prediction
• Assume we have learned a distribution H based on n samples, from
which we can sample (for instance using DRF)

• We would like to test this distribution against a new test point y drawn
from P∗

• Can use the Energy score:

S(y,H) = EX∼H[∥X− y∥Rd ]−
1

2
EX∼H[∥X− X′∥Rd ]

Theorem
In expectation, we score the true distribution lowest, i.e. :

S(P∗,H) := EY∼P∗ [S(Y,H)] ≥ EY∼P∗ [S(Y,P∗)] := S(P∗,P∗)
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General Idea of Scores

• The Energy score can be used to score distributional prediction
• Assume we have learned a distribution H based on n samples, from
which we can sample (for instance using DRF)

• We would like to test this distribution against a new test point y
• Can use the Energy score:

S(y,H) = EX∼H[∥X− y∥Rd ]−
1

2
EX∼H[∥X− X′∥Rd ]

• If we can sample from H, S(y,H) can be easily approximated!
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Imputation Scores

• P refers to the distribution of X with missing values
• P∗ ∈ P refers to the distribution of X∗ without missing values.
• H refers to an imputation distribution.

Definition (Proper Imputation Score (I-Score))

A real-valued function SNA(H,P) is a proper I-Score iff

SNA(H,P) ≤ SNA(P∗,P),

for any imputation distribution H.
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Imputation Scores

• For this to work under the challenging MAR setting we unfortunately
need to have a set of variables that is always observed.

• Lets call this set O, i.e. for all j ∈ O,mj = 0 for allm ∈ M
• A score that does not need that is also available and seems to work
exceedingly well, but without theoretical guarantees.
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Figure: Illustration of the new scoring method. The PMM view shows that only certain
conditional distributions can be compared under MAR. This is what we utilize here.



Score Estimation

• Lj: All patterns inM withmj = 1 (i.e. all possible pattern in which Xj is
observed)

• (X̃(i)l ), l = 1, . . . ,N sample generated from the conditional imputation
distribution HXj|xi,−j

ŜjNA(H,P) =
1

|i : mi ∈ Lj|
∑

i:mi∈Lj

(
1

2N2

N∑
l=1

N∑
ℓ=1

∥X̃(i)l − X̃(i)ℓ ∥R − 1

N

N∑
l=1

∥X̃(i)l − xi,j∥R

)
︸ ︷︷ ︸

Estimated Energy Score with predictive distribution
represented by (X̃(i)l )l and test point xi,j

,

Final score, SesNA(H,P), is the average of Ŝ
j
NA(H,P) over j.
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Propriety

Theorem
Assume MAR in (PMM-MAR) holds and that O is not empty. Then the population
version SesNA(H,P) is a proper I-Score.
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Figure: Left: Ordering of the I-score, Right: Ordering of the (negative) energy
distance. The latter uses the true underlying values.
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Conclusion

• This talk discussed the PMM view of missingness that helps understand
imputation under MAR

• We discussed 4 points the ideal imputation method should meet and
potential ways to evaluate imputation methods

• Despite intensive research, the quest for an imputation method meeting
all 4 points is still open

• We discussed the Imputation Scores and looked at a new score that is
proper under MAR
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