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University of Zurich and ETH

June 25, 2019

Joint Work with Loris Michel
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Two-Sample Test

We assume to encounter a collection of random vectors X1, . . . ,Xn and
Y1, . . . ,Yn with support X ⊂ Rp and Y ⊂ Rp respectively, such that

Xi
iid∼ PX and Yi

iid∼ PY , where PX and PY are some probability measures
on Rp.
Given this sample, we want to test

H0 : PX = PY , HA : PX 6= PY .
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Binomial Test

Given these iid samples of n vectors, we give each Xi the label of one,
while each Yi is labeled zero. Based on this dataset

D2n =



1 X1
...

1 Xn

0 Y1
...

0 Yn,


=



1 Z1
...

1 Zn

0 Zn+1
...

0 Z2n,


,

we fit a binary random forest classifier, giving a discrimination function,
g(·,θ,D2n) : Rp → {0, 1}.
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Binomial Test

For a training set of size 2n and a test set of size mn, we then calculate

L̂mn =
1

mn

mn∑
i=1

I{g(Zi ,D2n,θ)6=`i}︸ ︷︷ ︸
εi

.

L̂2n serves as an estimate for L2n, the true unknown generalization error
for a given dataset:

L2n := P(g(Z,D2n,θ) 6= `|D2n).
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Binomial Test

Since under H0

εi
iid∼ Bern(1/2)

and hence

mnL̂mn =
mn∑
i=1

εi ∼ Binomial(mn, 1/2),

we are able to construct an exact test, by simply rejecting if

mnL̂mn < B−1(α),

where B−1(α) is the α quantile of the Binomial(mn, 1/2) distribution.∗

∗This idea was already explored, for different classifiers, in Ramdas et al. (2016) or
Lopez-Paz and Oquab (2017)

Hediger and Näf (UZH / ETH) Random Forest in Two-Sample Testing June 25, 2019 7 / 46



Permutation Test

Instead of using the out-of-sample-error above, we can also use the
OOB-error

U2n = h2n((`1,Z1), . . . , (`n,Z2n)) =
1

2n

2n∑
i=1

I{g(Zi ,D2n\i) 6= `i},

where g(·,D2n \ i) : Rd → {0, 1}, represents the forest not containing the
i th observation for training.

HOWEVER, the behavior of the OOB error is hard to control theoretically,
even under H0, making it unsuited for our purposes at first inspection.
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Permutation Test

After calculation of the OOB-error reshuffle the labels K times to obtain
K permutations, σ1, . . . , σK say.

For each of these new datasets
(
Zi , `σj (i)

)2n

i=1
, calculate the OOB error

U
(j)
2n := h2n((Z1, `σj (1)), . . . , (Z2n, `σj (2n))).

Under H0, (`1, . . . , `2n) and (Z1, . . . ,Z2n) are independent and each U
(j)
2n

is simply an iid draw from the distribution F of the random variable

U
(j)
2n |(Z1, . . . ,Z2n).
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Permutation Test

Finally, approximate the α quantile F−1(α) by performing a large number
of permutations, and reject if

U2n < F−1(α)

.
NOTE: under H0

P(Rejecting H0) = E[P(U2n < F−1(α)|Z1, . . . ,Z2n)] ≤ E[α] = α.
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Permutation Test (Pseudo-Code)

Algorithm 1 hypoRF← function(X ,Y ,K , ...)

Require: X ,Y ∈ Rn×p and K ∈ N // p > n is not an issue
1: `← (1, ..., 1, 0, ..., 0)′ // ` represents the response variable
2: Z ← [X Y ]2n×p // row bind X and Y
3: D2n ← (`i ,Zi )

2n
i=1

4: g(.,D2n)← rf // training of a Random Forest classifier
5: OOB ← 1

2n

∑2n
i=1 I{g(Zi ,D

−i
2n )6=`i} // calculating the OOB-error

6: for j in 1:K do

7: D j
2n ←

(
`σj (i),Zi

)2n

i=1
// reshuffle the label

8: OOB j ← 1
2n

∑2n
i=1 I{g(Zi ,D

j,−i
2n ) 6=`σj (i)}

// calculating the OOB-error

9: end for

10: µ← 1
K

∑K
j=1 OOB

j

11: σ2 ← 1
K−1

∑K
j=1(OOB j − µ)2

12: pvalue ← P(OOB < Φ−1(α) · σ + µ) // using a normal approximation and α = 0.05
13: return pvalue
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Powerful Two-Sample Tests

As a comparison we will use 3 kernel-based tests:

1 the “quadratic time MMD” (Gretton et al., 2012a) using a
permutation approach to approximate the H0 distribution
(“MMDboot”)

2 its optimized version “MMD-full” †

3 as well as the “ME” test with optimized locations, “ME-full”
(Jitkrittum et al., 2016)

†The original idea for this was formulated in Gretton et al. (2012b), however they
subsequently used a linear version of the MMD. We instead use the approach of
Jitkrittum et al. (2016), which uses the optimization procedure of Gretton et al. (2012b)
together with the quadratic MMD from Gretton et al. (2012a).

Hediger and Näf (UZH / ETH) Random Forest in Two-Sample Testing June 25, 2019 13 / 46



Gaussian Mean Shift in Some Columns

Consider
PX = N(µ1, Ip×p) and PY = N(µ2, Ip×p)

so that the testing problem reduces to

H0 : µ1 = µ2 vs H1 : µ1 6= µ2.

We induce a shift of size δ ∈ R in d < p elements of µ2

µ2 = µ1 + (δ/
√
d) · 1d ‡

We study a “moderately sparse” case d = 20 (10% out of p = 200) and a
“sparse” case d = 2 (1% out of p = 200).

‡1d is a p dimensional vector with the first d elements equal to 1 and the remaining
p − d elements equal to 0
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Gaussian Mean Shift in Some Columns
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(a) d = 20, moderately sparse case.
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(b) d = 2 sparse case.

Figure: A point in the figures represents a simulation of size S = 200 for a specific test and a
δ ∈ (0, 0.125, 0.25, ..., 1). Each of the S = 200 simulation runs we sampled n = 300 observations
from a p = 200 dimensional multivariate Gaussian distribution, where d columns have a shift in
mean of δ√

d
and likewise n = 300 observations from p = 200 independent standard normal

distributions. The Random Forest used 600 trees and a minimal node size to consider a random
split of 4.
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Contamination Example

Let PX = N(µ,Σ) with µ set to 50 · 1 and Σ = 25 · Ip×p. For the
alternative, we consider the mixture

PY = λPc + (1− λ)PX ,

λ ∈ [0, 1], and Pc some distribution on Rp. This is what we describe as a
“contamination” of PX by PY with λ determining the contamination
strength.

We take Pc to be another independent (p − d)-variate Gaussian together
with d components that are in turn independent Binomial(100, 0.5)
distributed.
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Contamination Example
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(a) d = 20, sparse case.
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(b) d = p, no sparsity.

Figure: A point in the figure represents a simulation of size S = 200 for a specific test and a
λ ∈ (0.5, 0.55, ..., 1). Each of the S = 200 simulation runs we sampled n = 300 observations from
the contaminated distribution with λ ∈ (0.5, 0.55, ..., 1) and likewise n = 300 observations from
p = 200 independent standard normal distributions. The Random Forest used 600 trees and a
minimal node size to consider a random split of 4.
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Changing the Dependency Structure

Consider
PX = N(0, Ip×p) and PY = N(0,Σ),

where Σ is some positive definite correlation matrix.

For simplicity, we only consider a single correlation number ρ, which we
use in all p(p − 1)/2 unique correlation coefficients in Σ.
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Changing the Dependency Structure
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Figure: A point in the figure represents a simulation of size S = 200 for a specific test and a
ρ ∈ (0, 0.01, 0.02..., 0.15). Each of the S = 200 simulation runs we sampled n = 300 observations
from a p = 60 dimensional multivariate normal distribution with ρ ∈ (0, 0.01, 0.02..., 0.15),
representing PY . Likewise n = 300 observations were sampled from a p = 60 dimensional
multivariate normal distribution using ρ = 0, representing PX . The Random Forest used 600 trees
and a minimal node size to consider a random split of 4.
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Multivariate Normal Mean-Variance Mixture Distribution

The random vector Y is said to have a multivariate normal mean-variance
mixture distribution (MNMVM) if

Y = m (G ) + H(G )1/2Z,

where

Z ∼ N (0, IK );

G ≥ 0 is a non-negative, univariate random variable which is
independent of Z;

H : [0,∞)→ RK×K is a measurable function that returns a
symmetric, positive definite K × K matrix;

m : [0,∞)→ RK is a measurable function.

The name MNMVM comes from the fact that:

Y | (G = g) ∼ N (m (g) , gH) .

Hediger and Näf (UZH / ETH) Random Forest in Two-Sample Testing June 25, 2019 22 / 46



Multivariate Normal Mean-Variance Mixture Distribution

The random vector Y is said to have a multivariate normal mean-variance
heterogeneous tails mixture distribution (MNHMVM) if it can be
expressed as

Y = m (G) + H(G)1/2Z,

Z ∼ N (0, IK );

G = (G1, . . . ,GK ) is a vector of independent non-negative, univariate
random variable which is independent of Z;

H : [0,∞)K → RK×K is a measurable function that returns a
symmetric, positive definite K × K matrix;

m : [0,∞)K → RK is a measurable function.

The name comes from the fact that Y | (G = g) ∼ N (m (g) ,H(g)).
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COMFORT and HGH

An extension of the MNMVM approach was used in Paolella and
Polak (2015) to build the powerful COMFORT§ model.

The MNHMVM approach was introduced and used in Näf et al.
(2018) to build the so-called HGH model.

Both models can be estimated efficiently by an EM type algorithm
and both allow for a very efficient way to conduct PF optimization.

Important for our purposes: Both models incorporate latent random
variables, given by the “G” or “ G ”. In joint asset model, these can
be interpreted as unobserved “shocks” to the assets.

§A Common Market Factor Non-Gaussian Returns Model
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COMFORT and HGH

Viewed through this lens, the models represent two extremes; on the
one side, there is just one latent shock (COMFORT), while on the
other there are K (independent) latent shocks (HGH).

Is it possible to correctly identify whether one or several shocks to a
set of assets are more appropriate?

In other words; does it make sense to give each asset its own shock,
or have one shock jointly for several assets?

This problem is not easy. The number of G’s involved changes the
dependency structure in a nontrivial way.

However, simulation shows that our test is able to differentiate
between a model having one or K latent variables or something in
between.
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Application Idea

We reduce the problem by fixing some parameters in the distribution
of the latent shocks, such that each G , whether we have several or
just one, has a Gamma(λ, 1) distribution.

This means marginally, we have K variance gamma random variables,

Yk ∼ VG (λk , µk), for k = 1, . . . ,K ,

where

fVG (λ, µ) =
2√

2πΓ(λ)

(
|x − µ|√

2

)λ−1/2

Kλ−1/2(
√

2|x − µ|)

the density of a variance gamma with modified Bessel function
Kλ−1/2 (see Paolella (2007) Section 9.2).
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Goal

Let us first assume the Yk , k = 1, . . . ,K are independent.

Instead of getting K different estimates, λ̂1, . . . , λ̂K , we identify
J < K groups, such that for a given group all λ’s are the same.

We do this for a set of n observations, by optimizing the penalized
log-likelihood

S(λ1, . . . , λK ) :=
K∑

k=1

n∑
i=1

log(LVG (λk , µk , yi )) + η

K−1∑
j=1

∑
j>i

|λj − λi |
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After Throwing the LASSO

For a given penalty η, the components with equal λ’s form a natural
grouping.

These groups fulfill the necessary condition of having equal
parameters for the latent shocks.

However, since equal λ’s do not necessarily imply equal G ’s, this is
not enough!
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After Throwing the LASSO

For each group j = 1, . . . , J of size kj , efficiently estimate the
parameters of the COMFORT model if kj > 1 and do nothing if
kj = 1.

For each j , test the real data against data simulated from the
COMFORT model with parameters estimated above.

If the test cannot reject, we are satisfied and keep the kj assets as one
group.

For all groups for which the test rejects equality in distribution, we
repeat the procedure with a lower penalization η.
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Algorithm Sketch

1 Set η (at the beginning “very” high to get only one group)

2 Optimize S(λ1, . . . , λK ) with respect to λ1, . . . , λK
3 Group all assets that have the same λj . This gives J < K groups.

4 For each group j = 1, ..., J use our two-sample test to check whether
we cannot differentiate between the real data in group j and
simulated data from the kj -variate COMFORT model with λ̂j as
common parameter.

5 If the test cannot reject, we have found a group with a common λj .

6 For the groups for which we reject, reduce the penalty η and repeat
the above steps.

Stop If: we can not reject the two-sample test for all the groups OR if
there are only “groups” with kj = 1 left.
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High Hopes

We hope that we are able to identify the right latent structure in
simulations.

It might even be possible to prove consistency under some reasonable
assumption, i.e. that we are able to identify the right latent structure
with high probability when n increases.

We also hope to use it successfully on real data, though some more
tweeks might be necessary.

In general the algorithm is constructed in such a way that the model
is parsimonious: Only introduce a new latent variable/group if it is
absolutely necessary.
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Conclusion

An easy to use two-sample test for high dimensions

Many application possibilities (not just in finance)

Future research: Modify the test such that it is applicable beyond
two-sample testing (testing multiple groups at once, distribution
testing, . . . )
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Classification (Supervised Learning)

According to which
attributes (variables) do
you decide in which class
a certain observation
belongs?
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Classification (Supervised Learning)

The task can be summarized as:
Classifying observations according to optimized rules into a set of
categories.

The ingredients to get a classifier are

an n × p dimensional data set containing the predictor variables and
the label: Dn = (X , `)

a decision function with parameters θ: g(x ,θ)

a cost function to optimize with respect to θ: hn(g(x ,θ),Dn)
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Classification Tree: Two-Dimensional Toy Example

Figure: A simple illustration of a classification tree

Source: https://www.datacamp.com/community/tutorials/decision-trees-R
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Classification Tree

The underlying model function for a classification tree is

g(x ,β) =
M∑
r=1

βr I{x∈Rr},

where P = {R1, . . . ,RM} is a partition of Rp.

For a given partition of Rp we estimate βr by

β̂r =

∑n
i=1 `i I{x i∈Rr}∑n
i=1 I{x i∈Rr}

How do we get a reasonable partition of Rp?
Answer: proceed in a greedy way to find the best splitting variables and
best split points.
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Random Forest in Classification: Illustration

Figure: Illustration of A Random Forest in Classification

Source: https://support.bccvl.org.au/support/solutions/articles/6000083217-random-forest
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Random Forest in Classification

We assume a collection of classifiers {g(x, θk)}Kk=1 as in Breiman (2001),
where θk are iid realizations of a random element θ.

For a given realization of θ = (θ1, . . . , θk) (iid copies of θ), this leads to a
classifier g(x,θ,Dn), where

g(x,θ,Dn) =

{
1, if 1

k

∑k
j=1 g(x, θj ,Dn) ≥ 1/2

0, if 1
k

∑k
j=1 g(x, θj ,Dn) < 1/2

.

Since the random forest splits Rp, we then have g(x ,θ,Dn) : Rp → {0, 1},

i.e. for every x ∈ Rp we can assign a zero or one.
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What is an OOB-error?

In general:
When a learning algorithm is trained with a bootstrap sample, the
observations not contained in the bootstrap (out-of-bag) are used as the
test set.

In Random Forest:
The Random Forest is a collection of trees, each trained with a bootstrap
sample. OOB-error is the mean prediction error on each training sample
X i , using only the trees that did not have X i in their bootstrap sample
(approximately 1/3 of the trees).
Formally, as the amount of trees goes to infinity

hn((`1,X1), . . . , (`n,Xn)) =
1

n

n∑
i=1

I{g(Xi ,Dn\i) 6= `i}

Note: We see the OOB-error as a function of the Random Forest.
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Appendix: Using the U-Statistic Theory

Algorithm 2 RFTest← function(X ,Y , α, ...)

Require: X ,Y ∈ Rn×p

1: `← (1, ..., 1, 0, ..., 0)′ ∈ R2n

2: Z ← [X Y ]2n×p
3: D2n ← (`i ,Zi )

2n
i=1

4: for k in 1:K do
5: {Sk,1, Sk,2} ← random partition of D2n

6: h̄n,k ← 1
2

∑2
j=1 hn(Sk,j)

7: end for

8: Û2n,K ← 1
K

∑K
k=1 h̄n,k

9: σ2
WP ←

1
Km(m−1)

∑K
k=1

∑m
j=1

(
hn(Sk,j)− h̄n,k

)2

10: σ2
BP ←

1
K

∑K
k=1(h̄n,k − Û2n,K )2

11: V̂2n,K ← σ2
WP − σ2

BP

12: if V̂2n,K < 0 then

13: V̂ ← σ2
WP

14: else
15: V̂ ← V̂2n,K

16: end if

17: if
Û2n,K−0.5√

V̂
< Φ−1(α) then

18: return (reject H0)
19: else
20: return (do not reject H0)
21: end if
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Appendix: Using the U-Statistic Theory

Using the theory derived in Mentch and Hooker (2016) we get that

Û2n,K − 0.5√
V̂

D→ N(0, 1),

where the variance estimate is derived as in Wang and Lindsay (2014).

Note: We need K > 2n and a reasonable amount of trees.
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Appendix: Copula

According to the theorem by Sklar (1959), any multivariate distribution is
directly linked to a copula.

Let
X = (X1, ...,Xd)′ ∼ F

with marginal distribution functions F1, ...,Fd then Sklar (1959) shows that

F (x1, ..., x2) =C (F1(x1), ...,Fd(xd)),

(x1, ..., xd)′ ∈ (R ∪ {−∞,∞})d ,

where C is a d-dimensional copula.
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Appendix: Copula

Consider two samples, X and Y , having cumulative distribution functions
FX and FY , respectively.
The test of interest is of the form

H0 : FX = FY vs. H1 : FX 6= FY .

FX is a p dimensional multivariate Gaussian, hence

X ∼ N (0, Ip×p).

FY represents the p-dimensional cumulative distribution function
constructed via a students-t copula with Gaussian margins.
More precisely,

FY (x1, ..., xp) = TR
v (Φ1(x1), ...,Φp(xp)),

where TR
v is the students-t copula with v degrees of freedom and

dispersion matrix R = Ip×p.
We write

Y ∼ TΦ(v ,R)
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Appendix: Copula Matlab/R-Code

r t c o p u l a <− f u n c t i o n ( n , R , d f ){

p <− n c o l (R)
T <− m a t r i x (NA, n , p )

f o r ( i i n 1 : n ){
r <− rmvt ( 1 ,R , d f )
f o r ( j i n 1 : p ){

term1 <− pt ( r [ j ] , d f )
term2 <− qnorm ( term1 )

T[ i , j ] <− term2
}

}
r e t u r n (T)

}

For the full code, see program listing 12.6 in

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH,

First Edition. Marc S. Paolella.
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