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On the one hand

® Flexible elliptical mixture distributions:
Y = p+ GY2HY %€, (1)

where e~N(0,1) and G is a random variable with support (0, +00),
independent of €.

1The MVG is a special case of the COMFORT model in Paolella and Polak=(2015).
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® Flexible elliptical mixture distributions:
Y = p+ GY2HY %€, (1)

where e~N(0,1) and G is a random variable with support (0, +00),
independent of €.

® For example in the paper we focus specifically on the Multivariate
Variance-Gamma (MVG), where!

G ~ Gamma(\, 1).

® In general one might write Y ~ GM(u, H, 0, ), where 6, collects all
parameters determining the distribution of G.

1The MVG is a special case of the COMFORT model in Paolella and Polak=(2015).
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® Crucially for some of these distributions, such as multivariate t and
MVG, efficient EM algorithms are available for parameter estimation.

Simon Hediger, Jeffrey Naf University of Zurich, ETH Zurich

C g the MGHyp Di Asset Returns 4/35



Methodology
00@00000000000000000000

On the one hand

® Crucially for some of these distributions, such as multivariate t and
MVG, efficient EM algorithms are available for parameter estimation.

® The algorithms impute the latent variable G by its conditional
expectation and then use Gaussian estimates for u and H.

Simon Hediger, Jeffrey Naf University urich, ETH Zurich

Ci g the MGHyp Distri n with Nonlinear S| ge in Modeling | Asset Returns 4/35



Methodology
00@00000000000000000000

On the one hand

® Crucially for some of these distributions, such as multivariate t and
MVG, efficient EM algorithms are available for parameter estimation.

® The algorithms impute the latent variable G by its conditional
expectation and then use Gaussian estimates for u and H.
® Let in the following

o 0= (I""v H70L)'
@ T the number of observations,
© N the number of dimensions (assets).
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General ECME algorithm

E-step: For t =1,..., T, calculate (Ait_l =E {Gt_l | Yt,é].
CM1-step: Update p, H by first obtaining the weighted mean

Zthl 6"15_1/2yt
S G
~—1/2

Then, with & = G; (y: — f1), calculate

1 T
A= ?;etej. (3)

CM2-step: Given the CM1-step updates of u, H, obtain new updates of 8; by
numerically maximizing the log-likelihood function In Ly(p, H, 6;)
with respect to 6;.

ﬂ:
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On the other hand

® The above algorithm monotonically increases the likelihood Ly in
each step.
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® The above algorithm monotonically increases the likelihood Ly in
each step.
® The key is that both the CM1- and CM2-step optimize a likelihood:

® The CM1-Step maximizes a Gaussian likelihood weighted with the
imputed G,
® The CM2-Step maximizes the marginal likelihood.
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On the other hand

® The above algorithm monotonically increases the likelihood Ly in
each step.
® The key is that both the CM1- and CM2-step optimize a likelihood:

® The CM1-Step maximizes a Gaussian likelihood weighted with the
imputed G,
® The CM2-Step maximizes the marginal likelihood.

® This idea should guide the construction of any new EM algorithm.
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® As usual, as N approaches T the estimation of the dispersion matrix
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On the other hand

® As usual, as N approaches T the estimation of the dispersion matrix
in (3) becomes problematic.

® Many shrinkage methods exist: Linear shrinkage, Factor modelling.

® Nonlinear Shrinkage (NL) of the covariance matrix was introduced

and subsequently (computationally) refined in Ledoit and Wolf
(2012, 2020a,b).
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Nonlinear Shrinkage

® NL is extremely powerful, both in theory and in practice, and
especially in finance applications.
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Nonlinear Shrinkage

® NL is extremely powerful, both in theory and in practice, and
especially in finance applications.

® Consider the eigenvalue decomposition of the sample covariance
matrix X:

~

$=0A0". (4)

® Both linear and nonlinear shrinkage shrink the eigenvalues of the
sample covariance matrix 3.

® NL shrinkage (asymptotically) solves the problem

A" = argmin Tr [(2 - OA(‘JT)Z}
Adiagonal
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Nonlinear Shrinkage

® “Nonlinear” shrinkage, because the eigenvalues get shrunken in a
nonlinear way.

® This is in contrast to linear shrinkage, where

A*=(1—-pA+pl (5)

® Expressions are based on random matrix theory and are quite
complicated.
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Nonlinear Shrinkage into the EM

® Nonlinear shrinkage is quite complicated.

® |t appears unclear how to write it as a likelihood problem, especially
in finite sample.

® Main Idea: Shrink the eigenvalues beforehand and use EM given a
fixed A*.
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General EM algorithm

E-step:
CM1-step:

CM2-step:

Fort=1,..., T, calculate G;! = E {G,_Tl | Yt,é].
Update p, H by first obtaining the weighted mean

-1 2
Et 1 / t.
Y 6;1/2

Then, with & = G, 1/2( — f1), calculate

=

-
N 1 o
H= 72@6?. (3)

Given the CM1-step updates of u, H, obtain new updates of 8; by
numerically maximizing the log-likelihood function In Ly(p, H, 6;)
with respect to 6,.
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General idea

® We always assume A* has ordered elements §; > 6> > ... > dy.

® Now the eigenvalues are fixed, the estimator H is of the form

H=VA*VT.

® Thus the estimation is over orthogonal matrices V:
V:VIV=VvVvT =1
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Nonlinear Shrinkage into the EM

® Main Idea: Shrink the eigenvalues beforehand and use EM given
fixed A*.

® Problem 1: How to get a monotone algorithm given a fixed A*?
® Problem 2: How to obtain A*?
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Problem 1

® Problem 1: How to get a monotone algorithm given a fixed A*?7
® Need to optimize the likelihood

In Ly c(0) = —% S {KIn(27Go) + In(IA°]) + €] V(N) IV Te,)

over V.
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Problem 1

® Problem 1: How to get a monotone algorithm given a fixed A*?7
® Need to optimize the likelihood

-
In Ly (6) = _% S {KIn(2rGe) + In(IN]) + & V(A) IV e}
t=1
over V.
argmax  InLy;g(p,H) = 0, (6)
VVTV=VVT =|

where U is part of the eigenvalue decomposition of A:
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® Problem 1: How to get a monotone algorithm given a fixed A*?7

® We still maximize a (constrained) Gaussian likelihood, when
choosing

A

V=U
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choosing

® The obtained estimator is then
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Problem 1

® Problem 1: How to get a monotone algorithm given a fixed A*?7

® We still maximize a (constrained) Gaussian likelihood, when

choosing
vV=U

® The obtained estimator is then

A=0A0" (7)

= This is exactly the NL shrinkage approach, but now on the "filtered”
values, that should ideally be more Gaussian.
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Problem 1

® Problem 1: How to get a monotone algorithm given a fixed A*?7

® We still maximize a (constrained) Gaussian likelihood, when
choosing

A

V=U

® The obtained estimator is then

A=0A0" (7)

= This is exactly the NL shrinkage approach, but now on the "filtered”
values, that should ideally be more Gaussian.

= If we run the above EM algorithm exchanging (3) with (7), the
resulting algorithm monotonically increases the likelihood Ly in each
step.

Simon Hediger, Jeffrey Naf University of Zurich, ETH Zurich

Col ng the MGHyp Distribution with Nonlinear Shri il i ial Asset Returns 15 / 35



Methodology
0000000000000 0e00000000

Problem 2

® Problem 2: how to obtain A*?

ncial Asset Returns



Methodology
0000000000000 0e00000000

Problem 2

® Problem 2: how to obtain A*?

® For our approach to make sense, A* should be the shrunken
eigenvalues of H in

Y = p + GY2HY?e.

Simon Hediger, Jeffrey Naf University of Zurich, ETH Zurich

Asset Returns 16 / 35



Methodology
0000000000000 0e00000000

Problem 2

® Problem 2: how to obtain A*?

® For our approach to make sense, A* should be the shrunken
eigenvalues of H in

Y = p + GY2HY?e.

® However: before having an estimation of E[G], only an estimate of
Cov(Y) = = = E[G] - H,

is available.
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Problem 2

® |dea: simply standardize the data by the estimated variances.
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Problem 2

® |dea: simply standardize the data by the estimated variances.

® |et
Var(Y7) 0 0
0 VVar(Ya) - 0
o = . . . . )
0 0 o Nar(Yw)
v Hi1 0 .. 0
0 VHy - 0
S = _
0 0 Hnn
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Problem 2

® |dea: simply standardize the data by the estimated variances.

® We consider the decomposition:
H = ST'S, (8)

where T' is the correlation matrix of H/2¢.
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Problem 2

® |dea: simply standardize the data by the estimated variances.

® We consider the decomposition:

H = STS, (8)

where T' is the correlation matrix of H/2¢.
* Notice that o = SE[G]'/? and so

Corr(Y;) = 0 'E[G]H, 0! =T.
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Problem 2

* Notice that o = SE[G]'/? and so

Corr(Y;) = 0 'E[G]H;,0 ! =T.

e Utilizing this intuition, we apply NL shrinkage on the estimated
correlation matrix of Y to obtain A*.
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Combining the ideas: Step 0

® ForY ~ GM(pu,H,0,) and X = o~ 1(Y — p),

X ~ GM(0,T/E[G],8,).
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Combining the ideas: Step 0

® ForY ~ GM(pu,H,0,) and X = o~ 1(Y — p),

X ~ GM(0,T/E[G], 0,).

® Thus we first standardize the data with the estimated standard
deviations & and mean y:

xe=6"'(y: —¥). 9)
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Combining the ideas: Step 0

® ForY ~ GM(pu,H,0,) and X = o~ 1(Y — p),

X ~ GM(0,T/E[G], 0,).

® Thus we first standardize the data with the estimated standard
deviations & and mean y:

xe=6"'(y: —¥). 9)

® As mentioned we then obtain A* from the covariance estimator of
the sample X = {xq,...,x7}.
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Combining the ideas: ECME

E-step: For t =1,..., T, calculate G;* = E {Gt_l | Yt,é].
CM1-step: Update fix, T by first obtaining the weighted mean
eo1/2
fx = 7Et ! _1/2t,
Y G

and the sample covariance matrix of € = @t’l(xt — fix),

(10)

= T

i - ElC] > el (11)
t=1

&
-

and take the eigenvalue decomposition, = lAJleAJT, which results
in the updated estimator:

r=0A0". (12)

CM2-step: Given the CM1-step updates of px, I', obtain a new update of 8,
by numerically maximizing the log-likelihood function Lx.
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Combining the ideas: ECME

The above EM algorithm increases the likelihood Lx monotonically in
each step.
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Combining the ideas: Final Step

The last step of the algorithm is to obtain estimates of y, S and H as,

fi = diag(2)"?fix +¥ (13)
§ = diag(2)/E[G] (14)
fi = 818. (15)

University of Zurich, ETH Zurich
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Combining the ideas: Final Step

® So far we developed an algorithm that is stable and fast, combining
EM ideas with the method of moment principle.
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EM ideas with the method of moment principle.

® However the monotonicity alone does not necessarily imply
consistency of the parameter estimates.
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Combining the ideas: Final Step

® So far we developed an algorithm that is stable and fast, combining
EM ideas with the method of moment principle.

® However the monotonicity alone does not necessarily imply
consistency of the parameter estimates.

® We now explore this in a simulation and empirical application.
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Combining the ideas: Final Step

So far we developed an algorithm that is stable and fast, combining
EM ideas with the method of moment principle.

® However the monotonicity alone does not necessarily imply
consistency of the parameter estimates.

® We now explore this in a simulation and empirical application.
To do this we return to the MVG model with

G ~ Gamma(A, 1).
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Simulation

® There are two parameters of interest: H and A.

® Settings: Number of Observations T = 1'250, A € {4, 8,20} and
N € {100,500}
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Simulation

® There are two parameters of interest: H and A.
® Settings: Number of Observations T = 1'250, A € {4, 8,20} and
N € {100, 500}.
® In all cases the true H is diagonal with
@ 20% of eigenvalues are equal to 1,

@A 40% of eigenvalues are equal to 3,
© 40% of eigenvalues are equal to 10,

as in Ledoit and Wolf (2012, 2020a,b).
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Simulation: Estimation of A\

Bias

N = 100; A

4

C-IID [ ] C-ID-NL

N=100; A =8

N = 100; A = 20

N =500; A =8

N = 500; A = 20

Figure 1: Estimation accuracy of the two COMFORT (C) approaches for different values of A
and N. The number of observations is fixed to T = 1250. The simulation was carried out S = 100

times.
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Simulation: Estimation of H

To assess the estimation accuracy of H, we study the so-called
Percentage Relative Improvement (PRIAL), as in Engle et al. (2019),

100 - (1 - EHH)]) , (16)
E[L(Ho)]

L(F1) — Tr(H'HA"Y/N) 1 (a7)

[Tr(lflfl)/Nr Tr(A-1)/N

where

with A referring to the estimation of H obtained with the original
algorithm, while H is obtained from the new Algorithm.
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Simulation: Estimation of H

Table 1: PRIAL of COMFORT-IID-NL against the COMFORT-IID for different
values of A and N. The number of observations is fixed to T = 1250. The
simulation was carried out S = 100 times.

N =100 9492 97.20 97.46
N =500 96.20 98.64 100.69
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Portfolio Application: Data and Portfolio Routine

® Based on the market capitalization, we consider daily observations of
the N € {100,500, 1000} largest stocks from CRSP (center for
research in security prices).
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research in security prices).

® The out-of-sample period contains 480 months from 13.01.1981
until 31.12.2020.

® The estimation window is 1260 days and we rebalance every 21 days.

® Global minimum variance portfolios (no short-sales constrains).
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Portfolio Application
(o] lee)

Portfolio Application: Data and Portfolio Routine

® Based on the market capitalization, we consider daily observations of
the N € {100,500, 1000} largest stocks from CRSP (center for
research in security prices).

® The out-of-sample period contains 480 months from 13.01.1981
until 31.12.2020.

® The estimation window is 1260 days and we rebalance every 21 days.
® Global minimum variance portfolios (no short-sales constrains).

® The 9 out-of-sample portfolio statistics are:

average annualized return (Average)

annualized standard deviation (Volatility)

final cumulative return ( Total Return)

maximum drawdown (Max. Drawdown)

annualized percentage turnover ( Turnover)

annualized information ratio (/R)

annualized Sortino ratio (Sortino)

annualized percentage STARR-ratio at the 98.5% level (STARRog.5%)
annualized empirical expected shortfall at the 98.5% level (ESqg 5% ).
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Portfolio Application: Summary Figure
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Figure 2: For N € {100, 500, 1000} and the global minimum variance portfolio, the annual
volatility is plotted against the annual percentage turnover. Each point in a subfigure represents
one of the six models. The out-of-sample standard deviation is on the y-axis. The optimal region
is highlighted in green (low turnover and low volatility).
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Portfolio Application: out-of-sample portfolio statistics

Average Volatility Total Return Max. Drawdown Turnover IR Sortino STARRgg 50, ESgg 5%
N = 100
MN-11D 11.11 12.84 6003.55 —36.10 1540.84 0.87 1.22 3.88 286.19
MN-11D-NL 11.08 12.69 5980.10 —37.99 1373.08 0.87 1.23 3.91 283.19
MN-DCC 11.01 12.71 5800.18 —41.10 3312.61 0.87 1.21 3.87 284.77
MN-DCC-NL 11.19 12.54 6301.54 —41.40 3055.15 0.89 1.25 3.98 281.23
C-1ID 10.90 12.68 5551.50 —35.03 1391.23 0.86 1.21 3.85 283.16
C-1ID-NL 10.96 12.66 5710.96 —37.02 1333.05 0.87 1.22 3.87 282.99
N = 500
MN-11D 11.00 10.24 6483.87 —33.64 4182.63 1.07 1.52 4.74 231.97
MN-11D-NL 11.02 9.35 6769.77 —33.96 2224.79 1.18 1.64 5.23 210.47
MN-DCC 12.42 10.78 11320.10 —31.12 5672.42 1.15 1.72 5.72 217.19
MN-DCC-NL 12.77 10.01 13470.83 —25.58 3596.63 1.28 1.93 6.56 194.59
C-1ID 10.90 10.05 6294.49 —32.30 3851.64 1.09 1.53 4.81 226.49
C-1ID-NL 11.86 9.29 9558.15 —33.43 2038.75 1.28 1.80 5.79 204.84
N = 1000
MN-11D 12.19 12.53 9456.22 —29.60 11832.57 0.97 1.43 4.31 282.69
MN-11D-NL 12.02 8.04 10629.57 —27.57 2324.35 1.49 2.12 6.78 177.19
MN-DCC 12.65 9.55 13003.95 —32.98 10162.29 1.32 1.96 5.88 215.00
MN-DCC-NL 13.39 7.18 18958.32 —29.60 3215.62 1.86 2.74 8.99 148.89
C-1ID 12.12 12.39 9261.59 —28.63 11682.46 0.98 1.44 4.35 278.60
C-1ID-NL 12.89 7.71 15285.68 —26.33 2189.69 1.67 2.42 7.76 166.03

Table 2: In the six model structures, MN stands for multivariate-Normal, C for
COMFORT and NL for nonlinear shrinkage.
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