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1 Introduction

The concept of probability or “chance” is abundant in our world, from the throw of a coin to

complex stochastic processes, such as financial returns data.1 In this lecture the goal is to struck a

balance between mathematical rigorosity and comprehensibility of the presented material (which

admittedly is not always easy in this particular branch of mathematics).

1.1 Motivation

Let us start by considering definitions already encountered in a first statistics course (at least

partly). This is just an overview, we will study most of these concepts in more detail during the

course. We deal with some sample space Ω (often called S in statistic courses for economists),

with certain outcomes ω ∈ Ω. On the other hand there are events A ⊂ Ω on which we can define

probabilities P (A). These are real numbers which are constrained to lie between 0 and 1 and

have to fulfill some other conditions. These conditions will be studied in more detail in the next

section. Consider the following example:

Example 1. A fair die is tossed once and the number of dots is observed. The set of outcomes

is Ω = {1, 2, 3, 4, 5, 6} with natural ordering ωi = i, i = 1, . . . , 6. Each outcome is equally likely:

P ({ωi}) = 1/6. Possible events include E =“rolling an even number” and O =“rolling a odd

number”. In this case E = {2, 4, 6}, O = {1, 3, 5}. ♦

So P is a function defined on sets, which means we need to define a domain of P . We will see

that the notion of a “σ-algebra” is most useful here. One then usually defines random variables

X, with values in R, and random vectors X with values in Rd. As will be seen these are actually

functions(!) with domain Ω and codomain R or Rd, e.g. X : Ω → R. Then we call for an

arbitrary ω ∈ Ω, X(ω) = x a realization of X. Usually one then differentiates between X being

“discrete” (i.e. X takes at most countably many values) or “continous” (i.e. it takes values in

a continuoum). There is actually much more to this distinction and we will attempt to be more

precise about this in Sections 3/4.

There are many different ways of describing a random variable X (i.e. many different angles

we can look at it). Often we are solely interested in its distribution, which tells us which values

occur with which probability/frequency. In Section 3, we’ll see that any random variable has a

cummulative distribution function (cdf):

R 3 x 7→ F (x) = P (X ≤ x).

If X is continuous, this cdf is differentiable everywhere, and the derivative is called the probability

density function (pdf), x 7→ f(x). This is most often the first thing we want and there are a great

1Deeply connected to this is the fact that we experience uncertainty in almost every step of our lives. This is

exemplified by the field of artificial intelligence (AI); First intelligences, built solely upon logic, were not able to

handle any “difficult” task. Only after the recent introduction of probabilistic methods, allowing for a degree of

uncertainty (e.g. something might be only true in 80 % of times, or on average), the field exploded with complex

tasks it could suddenly solve. See for example Russell and Norvig (2003).
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number of important pdf’s around. For example, the pdf or density of X ∼ N(0, 1) is plotted in

Figure 1. The analogous object for discrete X is the function

N ∪ {0} 3 x 7→ P (X = x).

In both cases (continuous and discrete) we may also define “moments” of X. It all starts with

the definition of the most important concept of expected value:

E[X] =

∫ +∞

−∞
xf(x)dx or E[X] =

∞∑
x=0

xP (X = x).

This expression may be seen as a measure of location of a distribution. The variance on the other

hand is a measure of dispersion. It is defined as

V(X) = E[(X − E[X])2].

For k ∈ N, the kth moment of a distribution is defined as

E[Xk] =

∫ +∞

−∞
xkf(x)dx or E[Xk] =

∞∑
x=0

xkP (X = k).

Taking k = 1 gives back the expected value. Very importantly, it might be the case that any

kth moment of a distribution does not exist! That is to say E[Xk] might not be well-defined,

but ±∞, or it might not even be defined at all. We will see an example where not even E[X] is

defined in Section 3.

Example 2. Consider again the die role above, but now Ω = {one, two, three, four, five, six}.
Then Ω is a set with six elements ω1, . . . , ω6, which are however not easy to handle mathematically.

We may still say that P ({one}) = . . . = P ({six}) = 1/6, but not much more. Define the random

variable X : Ω → R, X(one) = 1, X(two) = 2, . . . , X(six) = 6. Now we are back on the nicely

behaved space R. Furthermore, for x ∈ {1, . . . , 6}, P (X = x) := P ({ω ∈ Ω : X(ω) = x}) =

P ({ωx}) = 1/6. Thus we are able to calculate:

E[X] =
1

6
· 1 +

1

6
· 2 + ·+ 1

6
· 6 = 3.5,

or

V(X) =
1

6
· (1− 3.5)2 +

1

6
· (2− 3.5)2 + ·+ 1

6
· (6− 3.5)2 =

35

12
Note that we did not really need the underlying space Ω above. This is a repeating patter: Using

appropriate random variables, we are able to forget about the underlying sample space Ω sooner

or later and focus on R or Rd. ♦

1.2 Some mathematical notions

In mathematics basically everything is a set, see e.g. Dudley (2002, Chapter 1). In particular

sets play an immensely important role in probability theory, since “events” are modeled as sets.

Thus we recall a few set operations. First, for any set Ω, 2Ω is the power set, the set of all subsets

of Ω. That means any subset A ⊂ Ω has A ∈ 2Ω. So 2Ω is a “set of sets” (sets whose elements

are themselves sets). Let A,B ∈ 2Ω (or A,B ⊂ Ω), then important definitions are

2



Figure 1: pdf of a standard normal (left) and binomial with number of trials N = 20 and probability of success

p = 0.4 (right)

• intersection: A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}.

• union: A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}

• complement: Ω \A = Ac = {ω ∈ Ω : ω /∈ A}.

• difference: A \B = A ∩Bc.

• inclusion: A ⊂ B means ω ∈ A implies ω ∈ B. Note that in this lecture, if A ⊂ B, then

A = B is also possible (so “⊂” is not a strict inclusion).

Further, A and B are called (mutually) disjoint if A ∩B = ∅, i.e. there is no point in Ω that lies

both in A and B. By the principle of “extensionality” (Dudley, 2002, p. 3) A = B iff (if and only

if) A ⊂ B and B ⊂ A. This is often used when one wants to proof A = B; We then first proof

A ⊂ B by looking at arbitrary ω ∈ A and showing that ω ∈ B also holds. Doing the same thing

the other way around gives B ⊂ A and thus A = B. Let us look at an example:

Example 3. Let Ω = {−10, 2, 10}, A = {−10, 2} and B = {2, 10} (notice the brackets). Then

2Ω = {{−10}, {2}, {10}, {−10, 2}, {−10, 10}, {2, 10}, {−10, 2, 10}, ∅}.

In particular Ω ∈ 2Ω, and the same is true for A,B. Furthermore, A ∩ B = {2}, A ∪ B =

{−10, 2, 10}, Ac = {10}, A \B = {−10}. ♦

One can even define intersection and union for arbitrary sets! Important for us will be the

following case; Let (An)n∈N be a countable collection of sets.2 Then we may define

∞⋂
n=1

An = {ω ∈ Ω : ω ∈ An for all n ∈ N},

2We will soon be more precise about what countable means, for the moment just take it to be that the indices

of the sets An all lie in the natural numbers N.
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and
∞⋃
n=1

An = {ω ∈ Ω : ω ∈ An for some n ∈ N}.

It is also follows immediately from the definitions that( ∞⋂
n=1

An

)c
=
∞⋃
n=1

Acn and

( ∞⋃
n=1

An

)c
=
∞⋂
n=1

Acn. (1)

Finally note that everything we can proof for an infinite union/intersection, also holds for a

finite one. The reason is that we are able to write every finite union
⋃N
n=1An as

N⋃
n=1

An =
∞⋃
n=1

An,

simply by taking Am = ∅ for all m ≥ N + 1. Similarly, we may write

N⋂
n=1

An =

∞⋂
n=1

An,

by taking Am = Ω for all m ≥ N + 1. Another useful fact is that whenever A ⊂ B, then Bc ⊂ Ac

(see the Venn diagram for some intuition). Indeed, if ω ∈ Bc, then ω /∈ B by definition, and,

since A ⊂ B, ω /∈ A, or ω ∈ Ac.
Important examples of sets are also given by the different spaces one considers in mathematics.

Dudley (2002, Chapter 2) presents a very nice treatment of this. A topological space (T, T ), or a

measurable space (Ω,A) are highest in generality. A metric space (M,d) has a metric d defined

on it (a function into R to measure distance between points) and is a special case of a topological

space (i.e. every metric space is a topological space). A normed space (V, ‖ · ‖) is a vector space

with a norm ‖ · ‖ on it. Again, every normed space is also a metric space. Finally (Rd, ‖ · ‖d),
(R, ‖ · ‖1) or (N, ‖ · ‖1) are examples of normed spaces, with, for x = (x1, . . . , xd) ∈ Rd,

‖x‖d =

√√√√ d∑
i=1

x2
i ,

the “Euclidean norm”. They are mathematically speaking the “nicest” spaces we will encounter

and also the most important ones for our purposes.

2 Axiomatic Probability

We will now make all of the above more mathematically formal. The goal is to define things as

accurately as possible, without causing too much confusion. It thereby helps to remember, that

mathematics has actually little to do with reality. It just turned out to be a very powerful tool

in modeling real world phenomena. But in principle it is simply a logical coherent fairy tale,

based on axioms that might be true or false. One example of such unprovable axioms is given

by the Axioms of Probability, in Definition 2.2 below. The goal was to define something that

is mathematically useable and at the same time allows to model the concept of probability or

randomness that one observes in nature.
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2.1 Countable Probability Spaces

Any set Ω is finite, if it has finitely many elements. It is countably infinite if there exists a

bijective function to N. This is a complicated way of saying that Ω and N have the same number

of elements, as each element of Ω can be uniquely represented as an element of N. An example

is Ω = Q, the set of rational numbers. Then one can show that there exists a bijective (and

therefore invertible) function f : N→ Q. Another example is the Cartesian product

Ω = N× N = N2 = {(n,m) : n ∈ N and m ∈ N}.

In this case we can define the bijective function f : N×N→ N simply as f(m,n) = 2m(2n+1)−1,

so N× N is also countable.

Let first Ω be a finite set. That is, denote the sample space Ω with elements, or possible

outcomes, ωi, i = 1, . . . , N . Then Ω and a function P with domain 2Ω and range [0, 1] such

that
∑N

i=1 P ({ωi}) = 1 is referred to as a finite probability space. In these cases we often need

“counting”, that is to assess with combinatorial arguments how large a subset will be.3 It then

often helps to think of Ω as an urn, from which we draw balls of different kinds. Thus assume we

have N unique balls in an urn: we randomly draw n of them. We wish to know how many ways

there are of doing this, but we need to specify if the balls are drawn with or without replacement,

and also if the ordering of the balls is relevant or not. If we draw two blue balls b1, b2 for instance,

it does not matter which one we draw first, so we don’t have to count both (b1, b2) and (b2, b1).

Consider drawing the balls,

- “Ordered without replacement”: The first draw is one of N possibilities; the second is one

of (N − 1), ..., the nth is one of N − n+ 1. In total: R[n] = N ! / (N − n)!.

- “Ordered with replacement”: the first draw is one of N possibilities; the second is one of N ,

etc., so Nn possibilities.

- “Unordered without replacement”: similar to ordered without replacement, but we need to

divide R[n] by n! to account for the irrelevance of order, giving “N choose n”, N !
(N−n)!n! =

(
N
n

)
.

We left out the case of “Unordered with replacement”, which is quite involved (as combina-

torial arguments often are), see e.g. Paolella (2006, Chapter 2.1). Let us look at an example

instead:

Example 4. A lottery consists of 100 tickets, labeled 1, 2, . . . , 100, three of which are “winning

numbers”. You buy 4 tickets (that is you choose 4 tickets with equal probability from Ω).

Calculate the probability, p, that you have at least one winning ticket.

This is a situation with a drawing without replacement and where order does not matter.

In this case Ω is somewhat complicated. Denote N = {1, 2, 3, . . . , 100} the numbers of the 100

3This should not be the focus of this lecture, so we will go through this quite quickly, even though combinatorial

arguments are of utmost importance in certain areas of probability. For details see Paolella (2006).
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lottery tickets. Then

Ω = {{1, 2, 3, 4}, {1, 2, 3, 5}, . . . , {97, 98, 99, 100}},

that is each element of Ω is of the form ω = {m,n, q, r} with m,n, q, r ∈ N and m 6= n 6= q 6= r.

It is a set (i.e. curly brackets) because order does not matter, so that for instance {1, 2, 3, 4} =

{4, 3, 1, 2}. The condition m 6= n 6= q 6= r encodes the fact that we draw without replacement,

so no number can be drawn twice. Note that Ω has cardinality
(

100
4

)
. Now, there are 3 winning

numbers i, j, l say, while the rest are “losers”. Let A ∈ 2Ω be all ω with at least one winning

number in it, i.e. (assuming i, j, l are not equal to 1, 2, 3, 100 for the sake of illustration):

A = {{1, 2, 3, i}, {1, 2, 3, j}, {1, 2, 3, l}, . . . , {i, j, l, 100}}.

In this case A has (
3

1

)(
97

3

)
+

(
3

2

)(
97

2

)
+

(
3

3

)(
97

1

)
elements. The question is now what p = P (A) is. One way to solve this is the following: We

do not win with probability 1 − p. In this case, from the 3 winning tickets, you choose none,

from the 97 losing tickets, you draw 4. This means Ac has
(

3
0

)(
97
4

)
elements (so that in fact

|A|+ |Ac| = |Ω|). Thus, since P ({ω}) = 1/
(

100
4

)
for all ω ∈ Ω,

1− p = P (Ac) =

(
3
0

)(
97
4

)(
100
4

) =
97 · 96 · 95 · 94

4!

4!

100 · 99 · 98 · 97
=

96 · 95 · 94

100 · 99 · 98
= 0.8836.

♦

We can also consider a small example of a countably infinite probability space:

Example 5. Consider tossing a fair coin until a tail appears. It is theoretically possible that the

first 10,000 trials will result in heads, or that a tail may never occur. Letting ωi be the total

number of required tosses, i = 1, 2, . . ., we see that Ω is countably infinite. If associated with Ω is

a function P with domain 2Ω and range [0, 1] such that
∑∞

i=1 P ({ωi}) = 1,
(
Ω, 2Ω, P

)
is referred

to as a probability space. For example, taking P ({ωi}) = (1/2)i is valid. ♦

It will be demonstrated in the next section that things are indeed quite simple in this case, in

the sense that we can characterize the whole probability measure P with a collection of numbers.

2.2 General Situation

Before we can define probability formally, we need to talk about the concept of sets of sets. In

particular these are sets with elements that are themselves sets.

Let us again properly introduce the terms already encountered in the introduction.

• A realization is the result of some well-defined trial or experiment performed under a given

set of conditions, whose outcome is not known in advance, but belongs to a set of possibilities

or set of outcomes which are known in advance.
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• The set of possible outcomes could be countable (either finite or denumerable, i.e., countably

infinite) or uncountable.

• Denote the sample space as Ω, the set of all possible outcomes, with individual outcomes

or sample points ω1, ω2, . . .. A subset of the sample space is known as an event, usually

denoted by a capital letter, possibly with subscripts, i.e., A, B1, etc., the totality of which

under Ω will be denoted A, and forms the collection of events—also called the collection of

measurable events. This is the σ-algebra introduced in Definition 2.1.

• An outcome ω ∈ Ω may belong to many events, always belongs to the certain event Ω, and

never to ∅, the empty set or impossible event.

• The usual operations in set theory can be applied to two events, i.e., complement, intersec-

tion, union, difference, symmetric difference, inclusion, etc.

• Two events are mutually exclusive or disjoint if A ∩B = ∅.

• If a particular set of events Ai, i ∈ J , are such that
⋃
i∈J Ai ⊇ Ω, they cover (or exhaust)

the same space Ω.

• If events Ai, i ∈ J , are such that
⋃
i∈J Ai = Ω are disjoint and exhaust Ω, they partition Ω,

i.e., one and only one of the Ai will occur on a given trial.

Now the probability P is defined on sets. So what is its domain? When Ω was finite or

countably infinite, we could simply define P on 2Ω. It turns out that does not work any longer

if Ω is uncountable: One can construct a counter example for which it is not possible to find

P : 2Ω → [0, 1] and also have the properties in Definition 2.2. The problem, as it turns out, is

that 2Ω is too large, see also Jacod and Protter (2004, p. 35). So we need to take a smaller set of

sets to define P on. However it should still be large enough to fulfill certain sensible properties.

To formalize this, the notion of a “σ-algebra” is introduced:

Definition 2.1 (σ-algebra). Let Ω be an arbitrary set. A ⊂ 2Ω is called a σ-algebra if

(i) Ω ∈ A

(ii) If A ∈ A then also Ac ∈ A

(iii) If (An)n∈N is a family/sequence of sets in A (i.e. An ∈ A for all n), then also

∞⋃
n=1

An ∈ A

For (iii) we say A is closed under countable unions. Since any finite union can be written as a

countably infinite one (by choosing Am as the empty set for all m larger than the number of sets,
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as in Section 1.2), it is also closed under finite unions. Moreover, if (An)n∈N is a family/sequence

of sets in A then An and also Acn ∈ A and thus

∞⋂
n=1

An =

( ∞⋃
n=1

Acn

)c
∈ A.

So A is also closed under countable intersection (and thus also under finite intersection). A first

important example of a σ-algebra is 2Ω for any set Ω. All subsets A of Ω are elements of 2Ω,

so clearly (i)-(iii) of the above definition hold. Crucially, there are however σ-algebras strictly

smaller than 2Ω on which we can define probability measures. For instance, if we take any set

A ⊂ Ω and define A = {A,Ac,Ω, ∅}, then you may verify that A is a σ-algebra.

Having the notion of a σ-algebra at hand, we can finally define probability formally:

Definition 2.2 (Probability measure). Let A be a σ-algebra on Ω. A probability measure is a

function, which assigns a real number P (A) to each event A ∈ A such that

(i) P (A) ≥ 0,

(ii) P (Ω) = 1, and

(iii) for a countably infinite sequence of mutually exclusive events (An)n∈N,

P

( ∞⋃
n=1

An

)
=
∞∑
n=1

P (An) .

The latter requirement (iii) is known as (countable) additivity. If Ai ∩ Aj = ∅, i 6= j and

An+1 = An+2 = · · · = ∅, then P (
⋃n
i=1Ai) =

∑n
i=1 P (Ai), which is finite additivity. The triplet

(Ω,A, P ) refers to the probability space with sample space Ω, collection of measurable events A
and probability measure P . Finally note that while (i) and (ii) are clearly sensible assumptions to

put on a probability, condition (iii) has more to do with mathematical convenience than anything

else. Many important results could not be proven without this axiom.

Let us go back to the case of countably infinite or finite probability spaces (again, this is what

we refer to as being “countable”). In this case any set A ⊂ Ω has at most a countably infinite

number of points. But two single points are always disjoint sets (that is {ωi} and {ωj} are always

disjoint for j 6= i), thus point (iii) means:

P (A) =
∑
ω∈A

P ({ω}).

In words; the probability of A is just the sum of the probability of its elements. This seems to make

intuitive sense and is often also mentioned in a first statistics course.4 For instance, in Example

1, the probability of rolling an even number P (E) = P ({2, 4, 6}) = P ({2})+P ({4})+P ({6}). So

in fact if we know what P ({ω}) is for all ω ∈ Ω, we can measure the probability of any A ⊂ Ω. In

other words P can be defined on 2Ω, as mentioned before. This has an important consequence:

4As we will see this is of utmost importance for discrete random variables.
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Theorem 2.1 (Adaptation of Theorem 4.1 in Jacod and Protter (2004)). If Ω is countable, then:

(a) Any collection of real numbers (pω)ω∈Ω with
∑

ω∈Ω pω = 1 and pω ≥ 0 uniquely defines a

probability on (Ω, 2Ω).

(b) Conversely, any probability P on (Ω, 2Ω) is characterized by its values on the atoms, i.e. by

pω := P ({ω}), ω ∈ Ω.

Proof. For (a), let us define a function P on the σ-algebra 2Ω and check that it meets the

properties in Definition 2.2. For any A ∈ 2Ω, define P (A) as,

P (A) =


∑

ω∈A pω, if A 6= ∅

0, if A = ∅
.

This P (A) is indeed well-defined, meaning that each A ∈ 2Ω, P (A) is a unique number. This

follows because pω ≥ 0 and ∑
ω∈A

pω ≤
∑
ω∈Ω

pω = 1,

meaning the sum, if uncountably infinite, is absolutely converging. Also see Remark 1.

Then, since pω ≥ 0, P (A) ≥ 0 for all A ∈ 2Ω, which is (i). Further

P (Ω) =
∑
ω∈Ω

pω = 1,

by assumption giving (ii). Now let (An)n∈N be a countable, mutually disjoint collection of sets in

2Ω, then it holds that

P

(⋃
n∈N

An

)
=

∑
ω∈∪nAn

pω,

by definition. Now, because the An are mutually disjoint, it follows that ω ∈
⋃
nAn means ω is

exactly in one An: It has to be in at least one An, Ai say, but if it were in Aj as well for some

j 6= i, then Ai and Aj would not be disjoint. But this indeed means that∑
ω∈∪nAn

pω =
∑
ω∈A1

pω +
∑
ω∈A2

pω + . . . =
∑
n∈N

∑
ω∈An

pω =
∑
n∈N

P (An),

with Remark 1 below. In other words we have just shown that

P

(⋃
n∈N

An

)
=
∑
n∈N

P (An),

and (iii) holds as well! So P : 2Ω → [0, 1] meets the conditions in Definition 2.2 and is thus a

probability measure.

For (b), it is enough to remember what we have shown above, namely that for any probability

P on (Ω, 2Ω) and any A ∈ 2Ω:

P (A) =
∑
ω∈A

P ({ω}).

So clearly we can find the probability of any set A ∈ 2Ω, as soon as we know pω := P ({ω}) for

all ω. This is exactly what we mean by the statement that P is characterized by (pω)ω∈Ω �

9



Remark 1. Note that the expression
∑

ω∈A pω above does not say anything about the order of

how we sum (and might not even be well-defined a priori). All we know is that we sum potentially

infinitely many terms. In general, one has to be careful with such things; Consider the sum

∞∑
n=1

un

with un ∈ R for all n. This sum may not defined in the sense that the sequence SN =
∑N

n=1 un

does not converge (this is what we mean, by saying the sum is not “well-defined”). Consider for

example u1 = u3 = . . . = 1 and u2 = u4 = . . . = −1. In this case SN alternates between 1 and

0, without ever converging, i.e. the limit is not well-defined. This is not a problem however if all

un ≥ 0: In this case SN =
∑N

n=1 un is a monotone sequence. Its limit might be +∞, but it will

always be well-defined. What is more, it turns out that in this case, we may change the order of

the series as we like.5 Consequently, not only is the term
∑

ω∈A pω well-defined (and even smaller

or equal one in our case), but the problem that we did not specify the order in which we sum

evaporates. Also see (Jacod and Protter, 2004, Chapter 4). ♦

Example 6. An important application of Theorem 2.1 is a finite sample space Ω for which the

probability is the same for each outcome, i.e. P ({ω}) = a ∈ [0, 1]. The condition

1 =
∑
ω∈Ω

P ({ω}) = |Ω| · a

yields a = 1/|Ω|. In words: The probability of each outcome is simply the inverse of the number of

elements in Ω. In Example 1 we had a = 1/6 (the typical die), in Example 4 we had a = 1/
(

100
4

)
.

The formula P (A) =
∑

ω∈A P ({ω}) = |A|a with a = 1/|Ω|, means that

P (A) =
|A|
|Ω|

.

So indeed in these examples (when all single outcomes are equally likely) the naive

p =
Number of things we want

Number of total things

is correct. ♦

As said a few times already, things get more complicated for an Ω which is not countable:

Example 7. Consider the space Ω = R. If we want to define a probability on this space, what kind

of σ-algebra should we choose? The most common one is the so called Borel σ-algebra, denoted

B(R). It is the smallest σ-algebra containing all open sets of R (one also say that it is generated

by all open sets in R). So for instance any open interval (a, b), with −∞ ≤ a ≤ b ≤ +∞, is in

B(R). What about other types of intervals? Take (a, b] instead, for −∞ ≤ a ≤ b < +∞. Then

we can actually write

(a, b] =

∞⋂
n=1

(
a, b+

1

n

)
∈ B(R),

5This could easily be proven using the fact that we can change the order of the summation for any absolutely

convergent sequence and then differentiate between the cases
∑∞
n=1 un <∞ and

∑∞
n=1 un =∞.
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since (a, b+ 1/n) ∈ B(R) and by definition of the σ-algebra. In fact it turns out that it is really

hard to find a subset B ⊂ R which is not element of B(R).6 We will see in the section on random

variables why this is convenient in practice. What kind of probability measure may we find on

R? We will encounter numerous examples in Section 3, since any known distribution/density is

actually a probability measure on (R,B(R)). So the Gaussian density plotted in Figure 1 for

instance defines a probability measure µ on (R,B(R)). Here we focus on a different example:

Consider the “dirac” measure at x ∈ R, δx : B(R) → [0, 1]. This probability measure is simply

defined as

δx(A) =

1, if x ∈ A

0, else
.

Let us check the conditions of Definition 2.2: Clearly, δx ≥ 0 and since x ∈ R, δx(R) = 1. So (i)

and (ii) are fine. Now let (An)n∈N be a countable sequence of mutually exclusive events in B(R)

(for example An = (n, n+ 1], or An = (1/(n+ 1), 1/n)). Then for any x ∈
⋃∞
n=1An, x is element

of exactly one An. just as in the proof of Theorem 2.1: By definition it is element of at least one

An, but since the sets are disjoint it can not lie in more than one. On the other hand if x ∈ An
for one n, then x ∈

⋃∞
n=1An, so:

x ∈
∞⋃
n=1

An ⇐⇒ x ∈ An for exactly one n

With this, it is easy to see that whenever δx (
⋃∞
n=1An) = 1, so is

∑∞
n=1 δx(An), and the same for

δx (
⋃∞
n=1An) = 0. So indeed

δx

( ∞⋃
n=1

An

)
=

∞∑
n=1

δx(An).

This simple measure can in fact be used to construct any “discrete” probability measure as we

shall see in Section 3.3. It is also bears strong resemblance to a probability measure on a countable

space, which we will also shortly explore in said section. ♦

In fact the measurable space (R,B(R)) is most important for us. The reason is that through

random variables, as introduced in Section 3, we can actually in most cases get to (R,B(R)), no

matter with what probability space we start. Now, going back to an arbitrary probability space

(Ω,A, P ), we study properties that Definition 2.2 implies. Many of these properties of (Ω,A, P )

are intuitive and easy to see, notably so with the help of a Venn diagram, such as in Figure 2.

We will nonetheless show them all formally:

(i) If A ⊂ B, then P (A) ≤ P (B): Indeed in this case we can use additivity of P , to obtain:

P (B) = P ((B \A) ∪A) = P (B \A)︸ ︷︷ ︸
≥0

+P (A) ≥ P (A) .

6An example of such a set is the cleverly constructed “Cantor set”, see e.g. Dudley (2002, Chapter 3.4). So

indeed B(R) is smaller than 2R.
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(ii) P (A) ≤ 1, since P (A) ≤ P (Ω) by (i).

(iii) P (Ac) = 1−P (A). Again using additivity together with the fact that A and Ac are disjoint

by definition:

1 = P (Ω) = P (A ∪Ac) = P (A) + P (Ac),

or P (Ac) = 1− P (A).

(iv) P (∅) = 0, directly implied by (iii) since Ωc = ∅.

(v) P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2). This follows because A1 ∪A2 = (A1 \A2) ∪
(A1 ∩A2) ∪ (A2 \A1), so that, since these are all disjoint sets,

P (A1 ∪A2) = P (A1 \A2) + P (A1 ∩A2) + P (A2 \A1)

= P (A1) + P (A2 \A1)

= P (A1) + P (A2 \A1) + P (A1 ∩A2)− P (A1 ∩A2)

= P (A1) + P (A2)− P (A1 ∩A2).

A few comments for the above: First, (i) is referred to as the monotonicity of the probability

measure, and is of great importance, despite its simplicity. Second, essentially the same argument

as in (iii) can be used to show a slightly more general statement: It is clear from the Venn

diagram that event A can be partitioned into two disjoints sets A ∩B and A ∩Bc, i.e., P (A) =

P (A ∩B) + P (A ∩Bc) or P (A \B) = P (A ∩Bc) = P (A) − P (A ∩B). For A = Ω, we get

(iii) back. Finally, if one defines a general measure ν (instead of probability measures), then the

condition ν(Ω) = 1 in Definition 2.2 is replaced by (iv), i.e., ν(∅) = 0.

A bit harder to proof is the important result in Theorem 2.2. To make sense of it, we first

need to mention that one can actually define a limit for a monotone increasing sequence (An)n∈N:

lim
n→∞

An :=
∞⋃
n=1

An.

Similarly, for (Bn)n∈N a monotone decreasing sequence:

lim
n→∞

Bn :=
∞⋂
n=1

Bn.

We are not completely rigorous here, but only want to mention that these limits of sets are

“well-defined” in the following sense: Take A =
⋃∞
n=1An and B =

⋂∞
n=1Bn. Then A,B are

always well-defined (even if An and Bn are not monotone). However with monotonicity, An or

Bn indeed get “closer and closer” to A or B as n gets larger, since for each n,
⋃n
i=1Ai = An

and
⋂n
i=1Bi = Bn. Thus limn→∞An and limn→∞Bn make sense for monotone (increasing or

decreasing) sequences. Finally, we also note that if (Cn)n∈N is an arbitrary sequence of sets (not

necessarily monotone), then the sequence (An)n∈N with

An :=

n⋃
i=1

Ci,
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is always monotone increasing, while (Bn)n∈N with

Bn :=
n⋂
i=1

Ci,

is always monotone decreasing. So even for arbitrary sequences (Cn)n∈N,

lim
n→∞

n⋃
i=1

Ci =
∞⋃
i=1

Ci, lim
n→∞

n⋂
i=1

Ci =
∞⋂
i=1

Ci.

Theorem 2.2. For any sequence of sets (An)n∈N in A,

P

( ∞⋃
n=1

An

)
≤
∞∑
n=1

P (An) . (2)

If further (An)n∈N is a monotone increasing sequence in A (i.e., An ⊂ An+1 for all n), then

lim
n→∞

P (An) = P

( ∞⋃
n=1

An

)
= P

(
lim
n→∞

An

)
. (3)

Similarly if (Bn)n∈N is a monotone decreasing sequence in A (i.e., Bn+1 ⊂ Bn for all n), then

lim
n→∞

P (Bn) = P

( ∞⋂
n=1

Bn

)
= P

(
lim
n→∞

Bn

)
. (4)

Proof. The proof of this theorem requires essentially just one (maybe not immediately obvious)

idea: Define for an arbitrary sequence of sets (An)n, C1 = A1 and

Cn = An \
n−1⋃
i=1

Ai

for all n = 2, 3, . . .. Thus, C2 is the part of A2 which is “new”, i.e., not already in A1 and,

n⋃
i=1

Ai = A1 ∪ (A2 \A1) ∪ (A3 \ (A1 ∪A2)) ∪ · · · ∪ (An \A1 ∪ . . . ∪An−1)

= C1 ∪ C2 ∪ · · · ∪ Cn =

n⋃
i=1

Ci.

We furthermore have: (a) Cn ⊂ An, (b) (Cn)n are disjoint (!), and, as we have just shown,

(c)

n⋃
i=1

Ai =
n⋃
i=1

Ci.

Crucially, with (b) we can use the countable additivity of P . Furthermore since the sequences of

sets (
⋃n
i=1Ai)n∈N and (

⋃n
i=1Ci)n∈N are automatically increasing (we add more and more sets),

their limits are well defined. In particular, we can take the limit in (c) on both sides to obtain

(c′)

∞⋃
i=1

Ai =

∞⋃
i=1

Ci.
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Let us first use this trick for an arbitrary sequence (An)n∈N in A, i.e. construct (Cn)n as

above. Then by countable additivity and the fact that P (Ci) ≤ P (Ai) by monotonicity of P ,

P

( ∞⋃
i=1

Ai

)
(c′)
= P

( ∞⋃
i=1

Ci

)
(b)
=
∞∑
i=1

P (Ci)
(a)

≤
∞∑
i=1

P (Ai).

This proves Equation (2). Now let us use the trick above on a monotone increasing sequence

(An)n in A. In this case it holds that for all n,

n⋃
i=1

Ai = {ω : ω ∈ Ai for some i}

= An.

So in fact we have from (c) that An =
⋃n
i=1Ci for all n. Since for any n also P (An) =

P (
⋃n
i=1Ci) =

∑n
i=1 P (Ci),

P
(

lim
n→∞

An

)
= P

(
lim
n→∞

n⋃
i=1

Ci

)
= P

( ∞⋃
i=1

Ci

)

and, from countable additivity,

P

( ∞⋃
i=1

Ci

)
=

∞∑
i=1

P (Ci) = lim
n→∞

n∑
i=1

P (Ci) = lim
n→∞

P (An) .

So indeed also (3) holds. It remains to proof (4): Let (Bn)n be any decreasing sequence in A.

Recall that, ( ∞⋃
n=1

Bn

)c
=
∞⋂
n=1

Bc
n and

( ∞⋂
n=1

Bn

)c
=
∞⋃
n=1

Bc
n,

and that A ⊂ B implies Bc ⊂ Ac. For monotone decreasing (Bn)n, B1 ⊃ B2 ⊃ · · · , and thus

Bc
1 ⊂ Bc

2 ⊂ · · · , so that

lim
n→∞

P (Bc
n) = P

(
lim
n→∞

Bc
n

)
from the previous result. Then

lim
n→∞

P (Bc
n) = lim

n→∞
(1− P (Bn)) = 1− lim

n→∞
P (Bn)

and, from the above results,

P
(

lim
n→∞

Bc
n

)
= P

( ∞⋃
n=1

Bc
n

)
= 1− P

( ∞⋂
n=1

Bn

)
= 1− P

(
lim
n→∞

Bn

)
,

so that

1− lim
n→∞

P (Bn) = 1− P
(

lim
n→∞

Bn

)
.

�
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A

B

C

A ∩B

A ∩ C

B ∩ C

A ∩B ∩ C

Figure 2: Illustration: Venn diagramm of 3 sets.

Equation (2) is equivalent to saying that P (·) is subadditive and is also referred to as Boole’s

inequality; if the Ai are disjoint, then equality holds. By taking complements of both sides (i.e.,

1−), Booles’s inequality can also be written as P (
⋂n
i=1A

c
i ) ≥ 1 −

∑n
i=1 P (Ai). Equations (3)

and (4) actually say that for an increasing sequence (An)n, limn P (An) = P (limnAn) and for a

decreasing sequence (Bn)n, limn P (Bn) = P (limnBn). In other words the map P : A → [0, 1] is

continuous!

Example 8. Let An =
[
0, 1 + n−1

]
, n = 1, 2, . . .. Show that (An)n is monotone and compute

L := limn→∞An. Let Bn := An \ An+1, n = 1, 2, . . .. Express Bn as an interval and express An

in terms of the Bi and L.

As 1/ (n+ 1) < 1/n, An = [0, 1 + 1/n] ⊃ [0, 1 + 1/ (n+ 1)] = An+1 and so (An)n is monotone

decreasing. So, L = limn→∞An =
⋂∞
i=1Ai which, as limn→∞ n

−1 = 0, is [0, 1]. We have

B1 = [0, 2] \ [0, 1.5] = (1.5, 2]; B2 = (1 + 1/3, 1 + 1/2]; and

Bn = [0, 1 + 1/n] \ [0, 1 + 1/ (n+ 1)] = (1 + 1/ (n+ 1) , 1 + 1/n] .

Also,

An =

[
0, 1 +

1

n

]
= [0, 1] ∪

(
1 +

1

n+ 1
, 1 +

1

n

]
∪
(

1 +
1

n+ 2
, 1 +

1

n+ 1

]
∪ · · ·

= L ∪
∞⋃
i=n

Bi.
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It should be clear that L and the Bi are mutually exclusive.

♦

One final note concerns sets with probability measure zero. Again take an arbitrary probability

space (Ω,A, P ). As we have seen

A = ∅ =⇒ P (A) = 0

However it is actually the case that other sets A ∈ A, besides the empty set, may also have measure

zero! That is P (A) = 0 does not necessarily imply A = ∅. As a very simple example consider

the dirac measure from Example 7 at x ∈ R, i.e. (Ω,A, P ) = (R,B(R), δx). Then any A ∈ B(R)

with x /∈ A has measure zero. More important examples are given by the Gaussian measure on

(R,B(R)), for which all single points (and in extension all countable sets) have measure zero.

2.3 Conditioning and Independence

In most applications, there will exist information which, when taken into account, alters the

assignment of probability to events of interest. As a simple example, the number of customer

transactions requested per hour from an on-line bank might be associated with an unconditional

probability which was ascertained by taking the average of a large collection of hourly data.

However, the conditional probability of receiving a certain number of transactions might well

depend on the time of day, the arrival of relevant economic or business news, etc. If these events

are taken into account, then more accurate probability statements can be made. Other examples

include the number of years a manufacturing product will continue to work, conditional on various

factors associated with its operation, and the batting average of a baseball player conditional on

the opposing pitcher, etc. If P (B) > 0, then the conditional probability of event A given the

occurrence of event B, or just the probability of A given B, is

P (A | B) =
P (A ∩B)

P (B)
.

This definition is motivated by observing that the occurrence of event B essentially reduces the

relevant sample space, as indicated in the Venn diagram. The probability of A given B is the

intersection of A and B, scaled by P (B). If B = Ω, then the scaling factor is just P (Ω) = 1,

which coincides with the unconditional case. If the occurrence or “non-occurrence” of event B

does not influence that of A, and visa-versa, then the two events are said to be independent,

i.e., P (A | B) = P (A) and P (B | A) = P (B). From the definition of conditional probability,

if events A and B are independent, then P (A ∩B) = P (A)P (B). This is also referred to as

pairwise independence. In general, events Ai, i = 1, . . . , n are (completely) independent if, and

only if, for every collection Ai1 , Ai2 , . . . , Aim , 1 ≤ m ≤ n,

P (Ai1 Ai2 · · · Aim) =
m∏
j=1

P
(
Aij
)
.

For n = 3, this means that

P (A1A2) = P (A1)P (A2) ,
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P (A1A3) = P (A1)P (A3) ,

P (A2A3) = P (A2)P (A3) ,

and P (A1A2A3) = P (A1)P (A2)P (A3). Clearly, pairwise independence and complete indepen-

dence are the same thing if we have n = 2 sets. For n > 2 complete independence clearly implies

pairwise independence. That pairwise independence does not imply mutual independence is re-

ferred to as Bernstein’s Paradox. It is in fact easy to find a counterexample, such that three events

A,B,C are mutually independent, but not fully independent: Take Ω = {a, b, c, d}, A = {a, b},
B = {b, c}, C = {c, a} and P ({ωi}) = 1/4 for i = 1, . . . , 4. We have seen earlier that then

P (A) =
∑
ω∈A

P ({ω}) = P ({a}) + P ({b}) =
1

2
,

so that P (A) = P (B) = P (C) = 1/2. Then we have that 1/4 = P (A)·P (B) = P ({b}) = P (A∩B)

and similarly for every other combination as above. Thus A,B,C are indeed pairwise independent.

However

P (A ∩B ∩ C) = P (∅) = 0 6= (1/4)3 = P (A) · P (B) · P (C),

so A,B,C are not fully independent.

From a Venn diagram with (overlapping) events A and B, event A may be partitioned into

mutually exclusive events A ∩B and A ∩Bc, so that

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A | B)P (B) + P (A | Bc) (1− P (B)) .

This is best understood as expressing P (A) as a weighted sum of conditional probabilities in which

the weights reflect the occurrence probability of the conditional events. In general, if events Bi,

i = 1, . . . , n are exclusive and exhaustive, then the law of total probability states that

P (A) =

n∑
i=1

P (A ∩Bi) =

n∑
i=1

P (A | Bi)P (Bi) .

Example 9. Interest centers on the probability of getting at least three girls in a row among

seven children. Assume that each child’s sex is independent of the all the others and let p =

P (girl on any trial). Denote the event that three girls in a row occur as R and the total number

of girls as T . Then, from the law of total probability,

P (R) =

7∑
t=0

P (R | T = t)P (T = t) .

Clearly, P (R | T = t) = 0 for t = 0, 1, 2 and P (R | T = 6) = P (R | T = 7) = 1. For T = 3, there

are only 5 possible configurations, i.e.,

gggbbbb, bgggbbb, . . . , bbbbggg,
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so that

P (R | T = 3) =
5p3 (1− p)4(
7
3

)
p3 (1− p)4 =

5

35
.

Some work shows that P (R | T = 4) = 16/
(

7
4

)
= 16/35 and

P (R | T = 5) = 18/

(
7

5

)
= 18/21,

so that

P (R) = 0 + 0 + 0 +
5

35

(
7

3

)
p3 (1− p)4

+
16

35

(
7

4

)
p4 (1− p)3 +

18

21

(
7

5

)
p5 (1− p)2

+

(
7

6

)
p6 (1− p) + p7 = 5p3 − 4p4 − p6 + p7.

For p = 1/2, P (R) ≈ 0.367. ♦

From the law of total probability, Bayes’ rule is given by

P (B | A) =
P (A ∩B)

P (A)
=

P (A | B)P (B)

P (A | B)P (B) + P (A | Bc)P (Bc)
.

For mutually exclusive and exhaustive events Bi, i = 1, . . . , n, the general Bayes’ rule is given by

P (B | A) =
P (A | B)P (B)∑n

i=1 P (A | Bi) P (Bi)
.

Example 10. A very important example of Bayes’ rule is the following: A test for a disease

possesses the following accuracy. If a person has the disease (event D), the test detects it 95% of

the time; if a person does not have the disease, the test will falsely detect it 2% of the time. Let

d0 denote the prior probability of having the disease before the test is conducted. (This could be

taken as an estimate of the proportion of the relevant population believed to have the disease).

Assume that, using this test, a person is detected as having the disease (event +). To find the

probability that the person actually has the disease, given the positive test result, we use Bayes’

rule,

P (D | +) =
0.95d0

0.95d0 + 0.02 (1− d0)
.

For a rare disease such that d0 = 0.001, P (D | +) is only 0.045! There is evidence to suggest

that many medical doctors are not capable of this calculation and vastly overestimate the prob-

ability of having a disease given a positive test result; see Gerd Gigerenzer’s “Reckoning with

Risk” (2002) for numerous examples and some of the social and economic implications of this. To

vastly aid understanding of Bayes’ rule in this context, Gigerenzer recommends expressing things

not in terms of probabilities, but rather in “natural frequencies”. (Gigerenzer, 2002, p. 41)

Consider posing the following question to a physician (let alone a layperson): Referring to

asymptomatic (when the patient does not experience any noticeable symptoms) women aged 40
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to 50 undergoing a routine mammography screening: The probability that one of these women

has breast cancer is 0.8 percent. If a woman has breast cancer, the probability is 90 percent that

she will have a positive mammogram. If a woman does not have breast cancer, the probability is

7 percent that she will still have a positive mammogram. Imagine a woman who has a positive

mammogram. What is the probability that she actually has breast cancer?

Bayes’ rule of course gives the answer: With d0 = 0.008,

P (D | +) =
0.90d0

0.90d0 + 0.07 (1− d0)
= 0.094,

i.e., less than a 1 in 10 chance! When the question is posed as above, it is not obvious for most

people to apply Bayes’ rule.

♦
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3 Random variables

Let (Ω,A, P ) be a probability space and (S,S) an arbitrary measurable space (think of (R,B(R))

or (Rd,B(Rd)). Recall the definition of the inverse image of a function f : Ω→ S: For any B ⊂ S

f−1(B) = {ω ∈ Ω : f(ω) ∈ B}.

In words this a set of points ω ∈ Ω, such that f(ω) ∈ B holds true. Very useful properties of the

inverse image follow almost immediately from the definition above. For any sets (Bn)n∈N,

f−1(

∞⋃
n=1

Bn) =

∞⋃
n=1

f−1(Bn) (5)

f−1(
∞⋂
n=1

Bn) =
∞⋂
n=1

f−1(Bn) (6)

f−1(Bc) = f−1(B)c (7)

In fact (5) and (6) hold for arbitrary unions and intersections (i.e. even over an uncountable

number of sets). But we are satisfied with union/intersections of finite or countably infinite

families of sets. Now let us look at random maps from the most general perspective:

3.1 General Situation

In mathematics “random” elements (random variables, vectors, or even random functions) are

simply so-called measurable functions:7

Definition 3.1. A function f : Ω→ S is called measurable (or more precisely A/S-measurable)

if

f−1(B) ∈ A for all B ∈ S.

For example:

Definition 3.2. If (S,S) = (R,B(R)) and X : Ω → R is A/B(R) measurable, then X is called

random variable. If for some natural number d > 1, (S,S) = (Rd,B(Rd)) and X : Ω → Rd is

A/B(Rd)-measurable, then X is called random vector. If (S,S) is a space of functions with some

σ-algebra S (for example `∞(T ) the metric space of all bounded real-valued functions on some

space T , together with B(`∞(T ))) and ψ : Ω→ S is A/S-measurable, then ψ is called a random

function.

The condition in Definition 3.1 might seem utterly strange. We will now explore why it is

important. Notice that we have a probability measure on (Ω,A), namely P , but none on (S,S).

Given a measurable function X : Ω→ S, how could we find a probability measure on (S,S)? It

turns out that for any B ∈ S,

µX(B) := P (X−1(B)) (8)

7Obviously nothing in mathematics is “random” in the usual meaning of the word.
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is a measure on (S,S). First of all P (A) is only defined for A ∈ A. But that is no problem, since

by measurability, X−1(B) ∈ A. So µX is defined on (S,S). Let us now formally show that it is

indeed a probability measure:

• For any B ∈ S, µX(B) = P
(
X−1(B)

)
≥ 0.

• µX(S) = P
(
X−1(S)

)
= P ({ω ∈ Ω : f(ω) ∈ S}) = P (Ω) = 1

• Finally if (Bn)n∈N is a sequence of disjoint sets in S, then
⋃
nBn ∈ S as well (σ-algebra)

and it also

µX

( ∞⋃
n=1

Bn

)
= P

(
X−1

( ∞⋃
n=1

Bn

))
(∗)
= P

( ∞⋃
n=1

X−1 (Bn)

)
=

∞∑
n=1

µX(Bn),

since also the sequence (X−1(Bn))n∈N is disjoint: Take any two sets X−1(Bj), X
−1(Bi),

i 6= j. If ω ∈ X−1(Bj), then by definition X(ω) ∈ Bj but since Bj ∩ Bi = ∅, X(ω) /∈ Bi or

ω /∈ X−1(Bi). Since ω ∈ X−1(Bj) was arbitrary, this means also X−1(Bj) ∩X−1(Bi) = ∅
and since in turn X−1(Bi) and X−1(Bj) were arbitrarily chosen from (X−1(Bn))n∈N, this

means the sequence is disjoint as well.

To proof the last point we made the bold claim that P
(
X−1 (

⋃
nBn)

)
= P

(⋃
nX

−1 (Bn)
)

in (*).

This of course simply follows from (6) above, but we will quickly verify this: If ω ∈ X−1 (
⋃
nBn),

then X(ω) ∈
⋃
nBn. By definition that means there exists at least one Bn such that X(ω) ∈ Bn.

But then ω ∈ X−1(Bn) and thus ω ∈
⋃
nX

−1 (Bn). Thus

X−1

(⋃
n

Bn

)
⊂
⋃
n

X−1 (Bn) .

We can make very similar arguments in the other direction, to see that

X−1

(⋃
n

Bn

)
⊃
⋃
n

X−1 (Bn) .

So in fact

X−1

(⋃
n

Bn

)
=
⋃
n

X−1 (Bn) ,

and thus their probabilities are also the same. So X induces a new probability measure µX on

(S,S). We call this measure the distribution of X. We will see many examples of distributions

for the case (S,S) = (R,B(R)) later. In fact for the important special case X : (Ω,A) →
(R,B(R)) (the random variable we usually look at), it can be shown that the above condition of

measurability is equivalent to

X−1((−∞, a]) ∈ A for all a ∈ R. (9)

So it is enough to show the above condition for X to be measurable. Why does that help? The

σ-algebra B(R) is already an unwieldy object, we don’t really know what is in there, it is simply
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too big. So for a given map X : Ω→ R checking directly whether X−1(B) ∈ A for all B ∈ B(R)

is next to impossible. In contrast, condition (9) is often relatively easy to verify.

Let us have a look at examples for which we will check measurability:

Example 11. Let (Ω,A) be an arbitrary probability space and X : Ω→ R take only two values,

X(ω) =

1, if ω ∈ A

0, if ω /∈ A

for some A ∈ A (you could think of A = B(R) and A = (−∞, a], for instance).

Then it holds for any B ∈ B(R) that

X−1(B) =



A, if 1 ∈ B, 0 /∈ B

Ac, if 1 /∈ B, 0 ∈ B

Ω, if 1 ∈ B, 0 ∈ B

∅ if 1 /∈ B, 0 /∈ B

Every set above is in A: A by assumption, and Ω, ∅ and Ac because A is a σ-algebra. So X is

indeed A/B(R) measurable.

♦

We also consider a more advanced (and important) example:

Example 12. Let (Ω,A) = (R,B(R)) and f : R → R be monotone increasing (i.e. x ≤ y implies

f(x) ≤ f(y)), then f is B(R)/B(R) measurable.

This is one of the cases where checking measurability directly is doomed to fail. However, if

we look at the inverse image of an interval, we see that, for any a ∈ R, either

f−1((−∞, a]) = (−∞, u)

or

f−1((−∞, a]) = (−∞, u],

for some u ∈ R. That is we know that the inverse image of an interval is an interval again, though

we don’t know whether it is open or half open! (This depends on the further properties of f).

We will prove this in a minute, first assume that this is indeed true. It was said before that any

interval (closed, open, or half-closed, half-open) is element of B(R). Consequently,

f−1((−∞, a]) ∈ B(R)

for any a ∈ R. In other words f is indeed measurable.

To proof the claim above, remember that f is monotone increasing, and that f−1((−∞, a]) =

{x ∈ R : f(x) ≤ a}. So, whenever x1 ≤ x2 ∈ R and x2 ∈ f−1((−∞, a]), then

f(x1) ≤︸︷︷︸
monotonicity

f(x2) ≤︸︷︷︸
x2∈f−1((−∞,a])

a.

22



In other words also x1 ∈ f−1((−∞, a]). Since x1, x2 above were arbitrary, we have just shown

that whenever x ∈ f−1((−∞, a]), then also y ∈ f−1((−∞, a]) for any y ≤ x. It is not hard to see

that this means we deal with an interval stretching to −∞. However this interval might have the

form (−∞, u) or (−∞, u], there is no way of telling without knowing more about f . By the way,

u = sup{x : f(x) ≤ a}, but again, we cannot say more without assuming more about f . ♦

The above example highlights the reason we need not think about measurability much more:

It is really hard to construct a map that is not measurable! For instance, together with increasing

functions, any continuous function f : R→ R is B(R)/B(R) measurable. (In fact any continuous

function from a topological space X to another topological space Y is B(X )/B(Y) measurable!)

Moreover, many operations involving measurable functions result in measurable functions again (

f = max(f1, f2) for instance). This is why in practice we often don’t need to check measurability.

Though one should remember that this is always meant when we talk about “random” in a

mathematical sense. Lastly, there are important cases when measurability indeed breaks down,

in the field of stochastic processes for instance. However this goes beyond the scope of this course.

Those interested may for instance consult the monumental work of van der Waart and Wellner

(1996). Let us give a final example in which we check measurability in a quite general case:

Example 13. Let (Ω,A), (S1,S1), (S2,S2) be arbitrary measurable spaces, X : Ω→ S1 be A/S1

measurable and F : S1 → S2 be S1/S2 measurable. Then the composition F ◦ X = F (X) is

A/S2 measurable. We could also say in less precise terms that if X is a random object and F is

a measurable function, then F (X) is a random object again.

This claim is actually easy to check: By measurability of X, we have

X−1(B) ∈ A (10)

for all B ∈ S1. In the same way the measurability of F means

F−1(C) ∈ S1 (11)

for all C ∈ S2. Importantly, one can also check that

(F ◦X)−1(C) = {ω : F ◦X(ω) ∈ C}

= {ω : F (X(ω)) ∈ C}

= X−1(F−1(C)) (12)

Putting (10) (11) and (12) together immediately gives

(F ◦X)−1(C) ∈ A

for all C ∈ S2, or that F (X) is A/S2 measurable. ♦

Finally, note that we have just given meaning to something that is usually very ill-defined in

a first (or even second and third) statistics course: Expressions like P (X < 0) or P (5 ≤ X ≤ 10)

or even P (X ∈ A), do not make any sense if not defined further. After all P is defined on subsets
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of Ω, so what should P (X > 0) even mean? Well, it is actually just a shorthand, for what we

defined before, namely

P (X < a) := P (X−1((−∞, a)) = µX((−∞, a))

or in general

P (X ∈ A) := P (X−1(A)) = µX(A),

for any A ∈ B(R). We already used this in Example 2, without explicitly stating it.

We conclude this introduction into very general random elements by focusing on Ω = R and

(almost) fully proving a monumental important result in Theorem 3.2. Let X : Ω → R be a

A/B(R) measurable map (i.e. a random variable). We then know that X induces a probability

measure on (R,B(R)) and that this is it’s distribution. However this is again a very complicated

object, defined on all of B(R)! This is impractical, we would like to have a better characterization

of such a distribution. For instance, it would be nice to just have one formula characterizing the

whole probability measure (which we will see is what we use in almost all practical cases). There

are in fact many ways of characterizing the distribution, the first (and one of the most important

ones), is through the cummulative distribution function (cdf):

Definition 3.3 (cdf). The function F : R→ [0, 1],

F (x) = P (X ≤ x) = µX((−∞, x])

is called the cummulative distribution function (cdf) of X.

Theorem 3.1. Any cdf F : R→ [0, 1], has

(i) F is monotone increasing (x ≤ y implies F (x) ≤ F (y)),

(ii) limx→+∞ F (x) = 1, limx→−∞ F (x) = 0,

(iii) F is right-continuous (for any y ∈ R: limx↓y F (x) = F (y)).

Proof. Recall the continuity of the probability measure as proven in Theorem 2.2.

(i) Whenever x ≤ y, (−∞, x] ⊂ (−∞, y] and by monotonicity of µX also F (x) ≤ F (y).

(iii) Take an arbitrary sequence xn ↓ x and An := (−∞, xn]. Then (An)n is decreasing with

limit

lim
n
An =

∞⋂
n=1

(−∞, xn] = (−∞, x].

Thus with the continuity of µX

F (x) = µX((−∞, x]) = µX(lim
n

(−∞, xn]) = lim
n
µX((−∞, xn]) = lim

n
F (xn).

So for any sequence (xn)n in R with xn ↓ x, limn F (xn) = F (x). This is actually equivalent

to saying that limx↓y F (x) = F (y).
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Figure 3: Example of a possible cdf. Source: Internet.

(ii) Same as (ii), but now using arbitrary sequences (xn)n and (yn)n in R with xn ↑ +∞ and

yn ↓ −∞, so that limn(−∞, xn] =
⋃
n(−∞, xn] = R and limn(−∞, yn] =

⋂
n(−∞, yn] = ∅.

�

Note that since F : R → R is monotone increasing by (i), it is also measurable by Example

12! This in turn means with Example 13 that if X : Ω → R is a random variable, then the

composition F ◦X = F (X) is a random variable again. We will quickly study the distribution of

this random variable in Section 3.2.

We will see many examples of important cdf’s in the next section. The great advantage of this

construction is that any random variable admits a cdf (contrary to a pdf which might not exist).

The only other construction that is this general is the characteristic function (cf). What is more,

any cdf-looking function (i.e. any function meeting conditions (i)-(iii) in 3.1) indeed completely

characterizes a probability measure on (R,B(R)).

Theorem 3.2 (Lebesgue-Stieljes). For any function F : R→ [0, 1] satisfying (i)-(iii) in Theorem

3.1 there exists a unique probability measure µ on (R,B(R)) with:

F (x) = µ((−∞, x]), for all x ∈ R (13)

Proof. We will only proof existence here. Showing uniqueness is important, but not difficult,

though we would need some auxiliary theorems for this. These can be found for instance in

Durrett (2010).

Thus assume that we have a function F : R → R with properties (i) - (iii) from Theorem

3.1. The idea of the proof is to construct a new function on a suitable probability space and to

verify that this is a r.v. Then µ is taken to be its distribution, and we also have to check that
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indeed (13) holds. Take Ω = (0, 1), A = B((0, 1)), P = Lebesgue measure on (0, 1). This in fact

the same as saying that P has the uniform distribution as introduced in the next section, i.e. for

0 < a ≤ b < 1,

P ((a, b)) = P ((a, b]) = P ([a, b)) = P ([a, b]) = b− a.

Now define for ω ∈ (0, 1):

X(ω) = sup{y ∈ R : F (y) < ω}, (14)

so that X : Ω→ R. If F is strictly increasing (i.e. invertible) then this is just the inverse F−1(ω).

However this general formulation allows to make the proof for any random variable/distribution

and any cdf F . Let us first study the set,

F−1((−∞, ω)) = {y ∈ R : F (y) < ω},

for any ω ∈ (0, 1). Then how does this set look like? As we have seen, this heavily depends

on the properties of F : First F is increasing, so we know from the arguments in Example 12,

that in fact F−1((−∞, ω)) is an interval stretching to −∞: (−∞, u) or (−∞, u], for u = X(ω).

Now assume that F−1((−∞, ω)) = (−∞, u]. Then this means by definition that F (u) < ω and

F (y) ≥ ω, for all y > u. However F is right-continuous as well, so there is a small ε > 0 such that

also F (u + ε) < ω (this follows directly from the definition of right continuity). But this means

that u+ ε ∈ F−1((−∞, ω)), a contradiction. So in fact the interval must be open:

F−1((−∞, ω)) = (−∞, u).

Now having this issue out of the way we can proof that X is indeed a random variable. The

following equality makes this possible:

∀y : {ω ∈ (0, 1) : X(ω) ≤ y} = {ω ∈ (0, 1) : ω ≤ F (y)}. (15)

(Again for intuition, think of X as the inverse of F ) Let us assume (15) to be true, before proving

it. Then for all y ∈ R,

X−1((−∞, y]) = {ω ∈ (0, 1) : X(ω) ≤ y}

= {ω ∈ (0, 1) : ω ≤ F (y)}

=

(0, F (y)], if F (y) < 1

(0, 1), if F (y) = 1,

i.e. X is indeed measurable (and thus a random variable), since all intervals in (0, 1) are elements

of the Borel σ-algebra on (0, 1).8 So we may define µ(A) = µX(A) = P (X ∈ A) for all A ∈ B(R)

and get our probability measure. What is more, with the same argument as above we have for

8Again recall that this condition of measurability is sufficient, we do not need to check X−1(A) ∈ B((0, 1)) for

all A ∈ B(R)
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all x ∈ R,

µ((−∞, x]) = P (X ≤ x) = P ({ω ∈ (0, 1) : X(ω) ≤ x})

= P ({ω ∈ (0, 1) : ω ≤ F (x)})

= F (x),

by the definition of P . So indeed also (13) is proven.

It remains to proof (15). For this it helps to remember that F−1((−∞, ω)) = (−∞, X(ω)) as

demonstrated above. Then for y ∈ R arbitrary:

“⊃” If ω ∈ {ω ∈ (0, 1) : ω ≤ F (y)}, 0 ≤ ω ≤ F (y), thus y /∈ {y ∈ R : F (y) < ω} = (−∞, X(ω))

and therefore X(ω) ≤ y.

“⊂” We show {ω ∈ (0, 1) : X(ω) ≤ y} ⊂ {ω ∈ (0, 1) : ω ≤ F (y)}, by showing

ω /∈ {ω ∈ (0, 1) : ω ≤ F (y)} =⇒ ω /∈ {ω ∈ (0, 1) : X(ω) ≤ y}.

So if ω > F (y) then by definition y ∈ F−1((−∞, ω)) = (−∞, X(ω)), or y < X(ω), which

means ω /∈ {ω ∈ (0, 1) : X(ω) ≤ y}.

�

Let us put the above result in context: In Theorem 2.1 it was demonstrated that for Ω

countable, all you need to find a new probability on (Ω, 2Ω) (and to completely characterize it),

is a collection of real numbers (pω)ω∈Ω with pω ≥ 0 and
∑

ω∈Ω pω = 1. Theorem 3.2 on the other

hand tells you that for (Ω,A) = (R,B(R)) it is enough to find the cdf F to build a new probability

measure (and to completely characterize it). In particular, if we have two probabilities µ1 and µ2

on (R,B(R)) with cdfs F1, F2, then we know by the uniqueness statement in theorem 3.2, that:

F1 = F2 =⇒ µ1 = µ2. So all we need to proof that µ1(A) = µ2(A) for all A ∈ B(R), is to show

that F1(x) = F2(x) for all x ∈ R. This will be used a few times below. In fact the cdf is also

(sometimes) enough to simulate from this distribution:

Remark 2. The above proof is constructive (those are often the best proofs): It theoretically gives

us a way to simulate a random variable for any given distribution, as soon as we have the cdf.

After all, there is no actual randomness in computers, similarly as there is no actual randomness

in mathematics. So simulating something random with (deterministic) computers is not at all

trivial. However the above proof gives us a principled way of doing this, as long as we can simulate

from a uniform distribution: Let F be the cdf of a probability measure µ on (R,B(R)) we want to

simulate from and (Ω,A, P ) the underlying probability space. Let also U be a uniform random

variable, that is U : Ω→ (0, 1) with µU = Lebesgue measure on (0, 1). Then we may simply use

U to get to the probability space from above, that is U provides a bridge between (Ω,A, P ) and

((0, 1),B((0, 1)), µU ). If we then define for each ω ∈ Ω, U(ω) = ω̃ ∈ (0, 1), we may define

X(U(ω)) = X(ω̃) = sup{y ∈ R : F (y) < ω̃}.
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As we have demonstrated above, X : ((0, 1),B((0, 1))) → (R,B(R)) is a random variable and its

distribution is µ! Thus the proof of Theorem 3.2 tells us that as long as we can simulate from a

uniform distribution, we are able to generate any distribution for which we are able to evaluate

the inverse cdf. (Every distribution has a cdf, though we might not be able to write it analytically

or invert it). ♦

Remark 3. The construction in (14) is also intimately related to the quantile function:

Q(p) = inf{x ∈ R : F (x) ≥ p} (16)

for p ∈ [0, 1]. In fact the proof above would have worked similarly using (16) instead of (14). If

F is continuous and strictly increasing (i.e. invertible), then

inf{x ∈ R : F (x) ≥ p} = sup{x ∈ R : F (x) < p} = F−1(p).

The quantile function is of utmost importance in many (statistical) applications. In statistics

one usually talks about the quartile to describe a distribution: The 25% and 75% quartile are

Q(0.25) and Q(0.75) respectively. The median is the 50% quartile, Q(0.5). An important example

in Finance is the Value at Risk (VaR) at level α, which is simply the negative of the α-quantile:

V aRα = −Q(α). See e.g. McNeil et al. (2005).

Let us give a small example of the quantile function, in case of a cdf that is not invertible:9

Define a measure on the finite measurable space Ω = {0, 1, 2}, A = 2Ω as

P ({ω}) =


1/2, if ω = 0

1/4, if ω = 1

1/4, if ω = 2

.

Moreover we define X : Ω → R, as the identity function: X(0) = 0, X(1) = 1, X(2) = 2. Then

for all A ∈ B(R) (simply by the definition of µX),

µX(A) =

3∑
i=1

P ({ωi})δX(ωi)(A) = 1/2 · δ0(A) + 1/4 · δ1(A) + 1/4 · δ2(A),

where δx(A) is the dirac measure at x, as in Example 7. The distribution function of µX is then

given as

F (x) =



0, if x < 0

1/2, if 0 ≤ x < 1

3/4, if 1 ≤ x < 2

1, if x ≥ 2

.

We now want to find Q(0.2). The smallest x such that F (x) ≥ 0.2 is given by x = 0, since

F (x) ≥ 1/2 for x ≥ 0 and F (x) = 0 < 0.2 as soon as x < 0. ♦
9Adapted from the statlect site (https://www.statlect.com/fundamentals-of-probability/quantile).
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3.2 Continuous Distributions

Recall the “intuitive” notion of a continuous random variable in Section 1. Formally speaking, a

random variable X is continuous, if it admits a density:

Definition 3.4 (Definition 11.2 in Jacod and Protter (2004)). The density of a probability

measure µ on (R,B(R)) is a nonnegative B(R)/B(R) measurable function f : R→ R that has for

all x ∈ R:

µ((−∞, x]) =

∫ x

−∞
f(y)dy. (17)

If µ is the distribution of a random variable X, then f is called the density or pdf of X.

Remark 4. A note to the integral expression in (17): In this lecture you can think of this as an

ordinary Riemann integral, which one can calculate with the tools used in first analysis courses.

However it is actually a more general integral with respect to a measure: That is, let ν be

an arbitrary measure on (Ω,A), and let f : Ω → R be A/B(R) measurable and nonnegative.

Then we are able to define the integral
∫

Ω fdν. We want to stress here, that measurability and

nonnegativity are enough assumptions on f to define the integral, no continuity or any other

strong assumptions are needed. If furthermore f is not necessarily nonnegative, then |f | is, and

we can define ∫
Ω
fdν,

as long as
∫

Ω |f |dν <∞. All of this is detailed in Section 4.1, for ν being a probability measure

P . In this lecture we usually take (Ω,A) = (R,B(R)) (or (Rd,B(Rd)) later) and ν to be the

very important Lebesgue measure λ, the unique measure assigning to any interval its length:

λ((a, b)) = λ([a, b]) = λ((a, b]) = λ([a, b)) = b − a. In any case, the integral with respect to the

Lebesgue measure luckily is the same than the Riemann integral whenever both exists. Since we

will look only at densities f which are Riemann integrable, it is enough to see
∫ x
−∞ f(y)dy as

a Riemann integral. However, there are a few nice properties of the Lebesgue integral that we

will need throughout the course. For instance, if we look at the Lebesgue integral, then we can

actually define the integration over any set A ∈ B(R), that is∫
A
fdλ =

∫
A
f(x)dx :=

∫
Ω
fIAdλ,

where IA(x) is 1 if x ∈ A and zero otherwise. It is then the case that we can find (in principle, it

is not really clear how to calculate this in practice) the probability of A ∈ B(R) as:

µ(A) =

∫
A
fdλ =

∫
A
f(x)dx =

∫
Ω
f(x)IA(x)dx (18)

So the measure µ(A) of any set A ∈ B(R) is just the integral over A. Let us quickly proof that

this is true, if we take the fact that we can define an integral over A for granted. Define for all

A ∈ B(R) the set function,

µ2(A) :=

∫
A
fdλ =

∫
A
f(x)dx.
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In Section 3.4 we show that µ2(A) is indeed a probability measure on (R,B(R)) (i.e. µ2(A) ≥ 0,

µ2(R) = 1 and countable additivity). Assuming this to be true, we would like to proof that

µ(A) = µ2(A) for all A ∈ B(R), or µ = µ2. But this equality is simple with Theorem 3.2: Let

F be the cdf of µ and F2 the one of µ2 (both are probabilities on (R,B(R)) so they have a cdf).

Then, for all x ∈ R,

F2(x) = µ2((−∞, x)) =

∫
(−∞,x)

f dλ =

∫ x

−∞
f(y) dy = F (x).

So in fact the cdf’s F, F2 are the same, and we thus immmediately know that the measures µ, µ2

are the same.

We stress again that (18) is well defined for f as in Definition 17, though it might be not clear

how to actually calculate it in practice. Finally, note that we did not assume f to be continuous,

but only measurable (again this comes out of the fact that we use this very general integral

expression)! However we deal exclusively with densities that are continuous. In this case it turns

out, as mentioned in Section 1, that indeed F ′ = f , i.e. the derivative of the cdf gives the density

back. ♦

Theorem 3.3 ( Theorem 11.3 in Jacod and Protter (2004)). A nonnegative B(R)/B(R) measur-

able function f : R→ R is the density of a probability measure µ on (R,B(R)) iff it satisfies∫ +∞

−∞
f(y)dy = 1. (19)

In this case f entirely characterizes the probability measure.

Proof. For the more interesting direction, assume f has f ≥ 0 and
∫ +∞
−∞ f(y)dy = 1. Define

F (x) :=

∫ x

−∞
f(t)dt, for all x ∈ R. (20)

We want to proof that there exists a probability µ on (R,B(R)) with f being the density of µ. To

do this, we can use the properties of the Lebesgue integral, treated in Section 4.1, to show that

F meets condition (i)-(iii) in Theorem 3.1. First, we may use f ≥ 0 and the monotonicity of the

integral to show monotonicity of F . That is, for x1 ≤ x2, we have I(−∞,x1](y) ≤ I(−∞,x2](y) and

thus I(−∞,x1](t)f(y) ≤ I(−∞,x2](y)f(y) for all y ∈ R and,

F (x1) :=

∫ x1

−∞
f(y)dy =

∫ +∞

−∞
f(y)I(−∞,x1](y)dy ≤

∫ +∞

−∞
f(y)I(−∞,x2](y)dy = F (x2).

Next, we can use the dominated convergence theorem (Theorem 4.4) to show that F is right-

continuous: Let (xn)n be a decreasing sequence converging to x ∈ R. Then the sequence of

functions (fI(−∞,xn])n∈N converges pointwise to fI(−∞,x], that is

lim
n→∞

f(y)I(−∞,xn](y) = f(y)I(−∞,x](y) for all y ∈ R.

Thus we have that,

lim
n
F (xn) = lim

n

∫ xn

−∞
f(y)dy = lim

n

∫ +∞

−∞
f(y)I(−∞,xn](y)dy =

∫ +∞

−∞
f(y)I(−∞,x](y)dy = F (x),
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as a consequence of the dominated convergence theorem.10 Thus we have shown that for any

decreasing sequence (xn)n∈N with a limit x ∈ R, limn F (xn) = F (x), or F is right-continuous.

With exactly the same procedure, we can also show that F is left-continuous: Let (xn)n be an

increasing sequence converging to x ∈ R. Then the sequence of functions (fI(−∞,xn])n∈N converges

pointwise to fI(−∞,x). Thus we have that,

lim
n
F (xn) = lim

n

∫ +∞

−∞
f(y)I(−∞,xn](y)dt =

∫ +∞

−∞
f(y)I(−∞,x)(y)dy =

∫ x

−∞
f(y)dy = F (x).

Using the same tricks again (even with the same dominating function g = f), we obtain that for

an increasing sequence (xn)n, xn → +∞,

lim
n
F (xn) = lim

n

∫ xn

−∞
f(y)dy =

∫ +∞

−∞
f(y)dy = 1,

and for a decreasing sequence with (xn)n, xn → −∞,

lim
n
F (xn) = lim

n

∫ xn

−∞
f(y)dy =

∫ +∞

−∞
lim
n
f(y)I(−∞,xn](y)dy = 0,

since I(−∞,xn](y)→ 0 for all y. Thus, we have shown that f defines a cdf F through the integral

in (20). Again by Theorem 3.2, this means there exists a unique measure µ, such that for all

x ∈ R:

µ((−∞, x]) = F (x) =

∫ x

−∞
f(y)dy,

which is what we wanted to proof.

The other direction is simple: Let us assume that µ is a probability on (R,B(R)), with density

f . Then by assumption,

F (x) = µ((−∞, x]) =

∫ x

−∞
f(y)dy.

In particular, again using the dominated convergence theorem, for any increasing sequence (xn)n,

xn → +∞, ∫ ∞
−∞

f(y)dy =

∫ ∞
−∞

lim
n→∞

f(y)I(−∞,xn]dy = lim
n→∞

F (xn) = 1,

which is (19). So in fact the cdf can be expressed in terms of f and as we have seen in Theorem

3.2 that the cdf completely characterizes µ. That means we are in principle able to calculate

µ(A) for any A ∈ B(R) from F alone. The pdf f now gives us a principled way of doing this,

with the integral in (18). �

Remark 5. We have shown that the cdf F : R→ R,

F (x) :=

∫ x

−∞
f(t)dt,

10Here we used the dominating function g(y) = f(y), which has g(y) ≥ f(y)I(−∞,xn](y) for all y ∈ R and n ∈ N
and ∫ +∞

−∞
g(y)dy =

∫ +∞

−∞
f(y)dy = 1 < +∞.
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is right-continuous and left-continuous. Thus it is also continuous, which is another nice feature

of having a density. Note that this is a property solely derived from the nonnegativity of f and

the properties of the Lebesgue integral, and holds even if f is not continuous. However it does

not necessarily hold for measures that don’t have a density. ♦

Remark 6. Note that in the above proof it was absolutely unnecessary to go through the cdf like

we did. The reason is that we had already worked out in remark 4, that for all A ∈ B(R),

µ(A) =

∫
A
f(x)dx.

This could be used to proof Theorem 3.3 more elegantly. This will in fact be done in Section

3.4, where we proof Theorem 3.3 on (Rd,B(Rd)) (this is Theorem 3.9). Nonetheless we followed

Jacod and Protter (2004) and used a longer proof using the cdf, to exemplify once again how to

make good use of Theorem 3.2. ♦

Remark 7. If f is the pdf of a probability measure µ then it is almost uniquely implied by µ.

That is it is characterizing µ (in the sense that for two densities f1 = f2 means µ1 = µ2 and that

for any A ∈ B(R) µ(A) can be calculated as in (18)), yet f is itself only “almost” unique: It is

actually possible that f 6= g only a set Ω0 ∈ A with λ(Ω0) = 0. We then say that f = g λ-almost

everywhere in the sense that the set on which f is not equal g has a Lebesgue measure zero. For

such two functions one can (quite easily) show that:∫
A
f(x)dx =

∫
A
g(x)dx.

So clearly f and g define the same probability measure, even though they are not completely the

same. Consider the two densities:

f(x) = I(0,1)(x)

g(x) = I[0,1](x)

Then f = g on all of R except, at the point {0, 1}, since f(0) = f(1) = 0 and g(0) = g(1) = 1.

However single points always have a measure of zero with respect to the Lebesgue measure

(Remember=λ([a, b]) = a− b for all b ≥ a ∈ R, and a single point {a} = [a, a]). So in fact f and

g determine the same distribution, the uniform distribution! ♦

This means whenever we have found a function f fulfilling the above conditions, we have

discovered and characterized a new distribution/probability measure on (R,B(R))!

Example 14 (Toy Example from Statistics). The following example is not of great relevance (to

my knowledge), but should serve as a toy example for us, before studying the very important

cases: Let for some c ∈ R, f : R→ R be:

f(x) = c(1− x)I[0,1](x) =

c(1− x), if 0 ≤ x ≤ 1

0, else
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Proof that this is the density of a distribution for a certain c and use Remark 2 to simulate from

this distribution with your favorite software.

We can choose c freely, so we notice first that c ≥ 0 is necessary for f(x) ≥ 0 for all x. Then

we may integrate∫ +∞

−∞
f(x)dx =

∫ 1

0
c(1− x)dx = c

∫ 1

0
(1− x)dx = c

[
x− x2/2

]1
0

= c− c

2

This is equal to one iff c = 2 > 0. By Theorem f is then a density of a distribution on (R,B(R)).

For x ∈ (0, 1) cdf is given as

F (x) =

∫ x

−∞
2(1− t)I[0,1](t)dt = 2x− x2,

while for x ≤ 0, F (x) = 0 and for x ≥ 1, F (x) = 1. This simple cdf is already not invertible for x

outside [0, 1], so we need to use the generalized inverse defined in (14). However remember that

we only need to look at y ∈ (0, 1) (by Remark 2 we simulate from a uniform distribution to get

to the probability space Ω = (0, 1)) and for such y ∈ (0, 1) this inverse simplifies to the regular

one (since F (x) ∈ (0, 1) only for x ∈ (0, 1), and on this interval F is continuous and strictly

increasing), so:

y = 2x− x2 ⇐⇒ −y + 1 = x2 − 2x+ 1 ⇐⇒ 1− y = (x− 1)2 ⇐⇒
√

1− y = |x− 1|,

and since x− 1 < 0 for all x ∈ (0, 1),√
1− y = |x− 1| ⇐⇒ −

√
1− y = x− 1 ⇐⇒ 1−

√
1− y = x.

So for any y ∈ (0, 1): sup{x ∈ R : F (x) < y} = 1 −
√

1− y. This can then be used to simulate

from the distribution by simulating U ∼ Unif(0, 1) and calculating 1 −
√

1− U , see Matlab

example. ♦

Before we look at the different distributions, we need to introduce some more important

notions. It should be clear from the above that evaluating integrals is an important part of working

with continuous distributions. Unfortunately calculating integrals is an art and most integrals

are actually not solvable analytically. To help with this task certain types of integrals are just

“defined” to be functions. That means, sometimes the goal is simply to change a given integral

until it resembles this specific form. Moreover, the specific structure of these integrals usually

make a numerical approximation very easy. In that sense we may treat an integration problem

as solved, if we can write it in terms of such a predefined function, even though the integration is

technically not removed.11 An important example of such a function defined through an integral

is the gamma function:

Γ (a) :=

∫ ∞
0

xa−1e−x dx, a ∈ R>0. (21)

11This should only motivate the main idea of these functions. Oftentimes they arise much more generally, for

example as solutions to differential equations, and just happen to have an integral representation.
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The gamma function is a smooth function (it is continuous as are all its derivatives) of one

parameter, say a, on R>0. There exists no closed form expression for Γ (a) in general, so that it

must be computed using numerical methods. However,

Γ (a) = (a− 1) Γ (a− 1) , a ∈ R>1, (22)

and, in particular,

Γ (n) = (n− 1)! , n ∈ N. (23)

Thus the gamma function generalizes the factorial, which is only defined for natural numbers, to

the positive real line. The relation in (23) immediately follows if we use (22) for n ∈ N, namely:

Γ(n) = (n− 1)Γ(n− 1) = . . . = (n− 1)(n− 2)(n− 3) · · · 1,

as Γ(0) = 1. To prove (22), apply integration by parts with u = xa−1 and dv = e−x dx. This

gives du = (a− 1)xa−2 dx, v = −e−x and

Γ (a) =

∫ ∞
0

xa−1e−x dx = uv|∞x=0 −
∫ ∞

0
v du = −e−xxa−1

∣∣∞
x=0

+

∫ ∞
0

e−x (a− 1)xa−2 dx

= 0 + (a− 1) Γ (a− 1) .

It can also be shown that Γ (1/2) =
√
π. The incomplete gamma function is defined as

Γx (a) =

∫ x

0
ta−1e−t dt, a, x ∈ R>0 (24)

and also denoted by γ(x, a). The incomplete gamma ratio is the standardized version, given by

Γ̄x (a) = Γx (a) /Γ (a) . (25)

In general, both functions Γ (a) and Γx (a) need to be evaluated using numerical methods. The

beta function is an integral expression of two parameters, denoted B (·, ·) and defined to be

B (a, b) :=

∫ 1

0
xa−1 (1− x)b−1 dx, a, b ∈ R>0.

Closed–form expressions do not exist for general a and b; however, the identity

B (a, b) =
Γ (a) Γ (b)

Γ (a+ b)

can be used for its evaluation in terms of the gamma function.

Example 15. To express
∫ 1

0

√
1− x4 dx in terms of the beta function, let u = x4 and dx =

(1/4)u1/4−1 du, so that∫ 1

0

√
1− x4dx =

1

4

∫ 1

0
u−3/4 (1− u)1/2 du =

1

4
B

(
1

4
,
3

2

)
.

♦

34



Similar to the incomplete gamma function, the incomplete beta function is

Bx (p, q) = I[0,1] (x)

∫ x

0
tp−1 (1− t)q−1 dt. (26)

Let us again define expectation, still not in full generality, but in a way that we are able to

use it for the upcoming calculations. Define for any random variable X,

X+ = max(X, 0)

X− = −min(X, 0)

the positive and negative parts of X. In other words if say X(1) = 5 and X(2) = −10, then

X+(1) = 5, X+(2) = 0 and X−(1) = 0, X−(2) = 10. It then holds that for all ω:

X(ω) = X+(ω)−X−(ω)

|X(ω)| = X+(ω) +X−(ω)

which may be checked by a case by case analysis. Moreover it is not hard to show that both X+

and X− will be A/B(R)-measurable if X is A/B(R)-measurable to begin with. Now a very nice

property of the Lebesgue integral is that for any measurable function g : R→ R:∫
g dλ =

∫
g(x)dx

is well-defined whenever g ≥ 0. It could be +∞, but similar to the case of limits of sequences this

does not really bother us usually. The key is that it could in principle be precisely determined.

As an aside, this does not hold true at all for the Riemann integral. However if it turns out that

g is also Riemann integrable and∫
|g(x)|dx =

∫
g(x)dx < +∞,

then Riemann and Lebesgue integral again can be used interchangeable.

Now in full generality, we could define

E[X+] =

∫
Ω
X+(ω)dP (ω), E[X−] =

∫
Ω
X−(ω)dP (ω)

which again is valid, because X+ and X− are measurable and nonnegative. Then if E[X+] < +∞
or E[X−] < +∞, we would define

E[X] = E[X+]− E[X−].

This definition is possible for any random variable, discrete, continuous or none of the two.

However, since we did not yet talk about integrals with respect to general (probability) measures

P , we will instead do this in less general terms, namely, for f being the density of X:

E[X+] =

∫
R

max(x, 0)f(x)dx

E[X−] =

∫
R
−min(x, 0)f(x)dx.
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Those are well defined since f is B(R)/B(R)-measurable by assumption and, again, since max(x, 0)f(x) ≥
0 and −min(x, 0)f(x) ≥ 0 for all x ∈ R. Now if both E[X+] < +∞ and E[X−] < +∞, then we

define the expecation of X to be

E[X] := E[X+]− E[X−] =

∫
R
xf(x)dx, (27)

otherwise we say E[X] does not exist. This approach of defining expectation only works for

continuous random variables (i.e. r.v. with a density f). One can also show that the general

approach discussed above “simplifies” to (27) for continuous random variables, so that the two

approaches are consistent.

Similarly we define for any measurable function g : R→ R:

E[g(X)] := E[g(X)+]− E[g(X)−] =

∫
R
g(x)f(x)dx, (28)

whenever E[g(X)+] < +∞ and E[g(X)−] < +∞. In the case where we know that E[g(X)] exists,

we will just directly calculate it as the integral in (28).

Finally, we will often deal with symmetric distributions:

Definition 3.5. A random variable X is symmetric around zero if X
D
= −X, that is X and −X

have the same distribution, or µX = µ−X .

For example, consider X ∼ N(0, 1). As we will mention again below, the Gaussian distribution

is completely characterized by its mean and variance (in this case 0 and 1). Now −X has

E[−X] = 0 and V(−X) = V(X) = 1 and it actually holds that −X is Gaussian as well (this can

for example be demonstrated using Remark 9 below). So indeed X
D
= −X and X is symmetric.

With this example in mind, one might surmise that the symmetry of a distribution or random

variable has a lot to do with the symmetry of its density. This is indeed true, as shown in Theorem

3.4. Before we attend it and its proof, we need some more remarks however

Remark 8. Two important remarks regarding the consequences of continuity (for cdf and density):

1. So far we only tiptoed around the fact that if the density f is itself continuous, then the

cdf is differentiable and F ′ = f , as mentioned in Remark 4. Now we will make this slightly

more precise (though without proof): At every x ∈ R at which f(x) is continuous, F is

continuously differentiable and F ′(x) = f(x). Thus if f is continuous for all x ∈ A, for some

set A ∈ B(R), then F is continuously differentiable on A and F ′(x) = f(x) for all x ∈ A.

This is not just nice for finding a pdf from a cdf, it also immediately has the nice benefit,

that if g : R → R is another continuous density for µX , i.e. f = g λ-almost everywhere,

then in fact F ′(x) = f(x) = g(x) for all x ∈ A.

In particular, if A = R, then F is continuously differentiable everywhere and F ′(x) := f(x)

is the unique continuous density of µX . That is any other continuous density g, as g = f .12

12One could still construct a different density g that is only continuous almost everywhere and for which it holds

that f = g only λ-almost everywhere. But then g is not continuous at all points for which g(x) 6= f(x).
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2. Below we want to find the cdf of a simple function of the r.v. X, namely of −X. To

distinguish them, let’s call the cdf of X, FX and the cdf of −X simply F−X . Then by

definition, for any random variable X, the cdf of −X can be expressed as:

F−X(x) = P (−X ≤ x) = P (X ≥ −x) = 1− P (X < −x).

Now notice that P (X < −x) is the left limit limy↑−x FX(y). Indeed, take any arbitrary

monotone sequence (yn)n with yn ↑ −x. Then FX(yn) is itself a monotone sequence, since

yn ≤ yn+1 implies FX(yn) ≤ FX(yn+1) and by the monotonicity of µX :

lim
n
FX(yn) = lim

n
µX((−∞, yn]) = µX((−∞, x)),

since limn(−∞, yn] =
⋃
n(−∞, yn] = (−∞, x). Since the sequence (yn)n∈N was arbitrary,

we have that

lim
y↑−x

FX(y) = µX((−∞,−x)) = P (X < −x).

So far this was all true, for any random variable X : Ω→ R. But now, if X admits a density

fX , we have shown above that FX is in fact continuous (whether or not fX is continuous)

we have that the left limit not only exists, but limy↑−x FX(y) = FX(−x), or:

F−X(x) = 1− P (X < −x) = 1− lim
y↑−x

FX(y) = 1− FX(−x). (29)

In general beware the simply lessons: The cdf F is always increasing, right-continuous and

limx→∞ F (x) = 1, limx→−∞ F (x), and:

density exists (continuous or not) =⇒ F continuous

density continuous =⇒ F differentiable

♦

Theorem 3.4. If X possesses a density fX : R → R which is itself continuous, then X is sym-

metric around zero iff fX(−x) = fX(x) for all x ∈ R, i.e. the density is symmetric. Furthermore

for any k odd for which E[Xk] exists, we have E[Xk] = 0.

Proof. First, we want to show that X being symmetric around zero, implies that the density fX

is symmetric. So by assumption µX = µ−X , and in particular we immediately know that µ−X

also has a continuous density, namely fX , since then for all x:

µ−X((−∞, x]) = µX((−∞, x]) =

∫ x

−∞
fX(t)dt.

By Remark 8, this immediately implies that F ′−X is a valid and even continuous density for −X
and,

F ′−X(x) = fX(x) for all x ∈ R.
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As also shown in Remark 8, F−X can be express through (29). But this means we may just

differentiate (29) to obtain the desired result, for each x ∈ R:

fX(x) = F ′−X(x) = (1− FX(−x))′ = fX(−x).

Now assume fX(x) = fX(−x) for all x ∈ R. Then with t = −s and dt = −ds,

FX(x) =

∫ x

−∞
fX(t)dt

= −
∫ −x
∞

fX(−s)ds

=

∫ ∞
−x

fX(s)ds

= 1− FX(−x)

= F−X(x),

using (29) in the last step. So in fact FX = F−X and thus we immediately know that µX = µ−X .

Finally if E[Xk] exists for any k ∈ N odd, then we can use the substitution y = −x, st.

dy = −dx and

E[Xk] =

∫
R
xkfX(x)dx

=

∫ 0

−∞
xkfX(x)dx+

∫ +∞

0
xkfX(x)dx

= −
∫ 0

+∞
(−y)kfX(−y)dy +

∫ +∞

0
xkfX(x)dx

(∗)
= −

∫ ∞
0

ykfX(y)dy +

∫ +∞

0
xkfX(x)dx

= 0.

The crucial facts in (∗) are that (−y)k = −yk, which is only true for k odd, and that f(x) =

f(−x). �

Remark 9. A similar idea as in the above simple proof also allows to find the pdf of a function of

the continuous random variable X. Say g : R→ R is a continuously differentiable and invertible

function with nonzero derivative, i.e. g′(x) > 0 or g′(x) < 0 for all x ∈ R. First assume that

g′(x) > 0, for all x. In particular, this implies that g is strictly increasing. We wish to find the

distribution µY of Y = g(X). Then if we assume the density of X, fX , to be continuous, we have

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)).

Taking derivatives:

dFY (y)

dy
= fX(g−1(y))

dg−1(y)

dy
.
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If g′(x) < 0 on the other hand,

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≥ g−1(y)) = 1− FX(g−1(y)).

with derivative

dFY (y)

dy
= −fX(g−1(y))

dg−1(y)

dy
.

Combining the two cases we can say that if g is continuously differentiable and strictly monotone

on R (g′(x) > 0 or g′(x) < 0 for all x ∈ R):

fY (y) = fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣ . (30)

An important example of this is the following: If X has some distribution with continuous

pdf fX , then for a ∈ R and σ > 0, Y = a+ σX has pdf:

fY (y) = fX(g−1(y))
dg−1(y)

dy
=

1

σ
fX

(
y − a
σ

)
, (31)

since g−1(y) = (y − a)/σ and g′(x) = σ > 0 for all x.

♦

Finally, assume we have a random variable X with a continuous density which is symmetric

around zero, and we want to find out whether E[Xk] exists. We need to check that

E[(Xk)+] =

∫ ∞
−∞

max(xk, 0)f(x)dx <∞

E[(Xk)−] =

∫ ∞
−∞
−min(xk, 0)f(x)dx <∞.

But in this case for k ∈ N odd, since xk ≥ 0 iff x ≥ 0:

E[(Xk)+] =

∫ ∞
0

xkf(x)dx,

and with y = −x, dy = −dx and −min(xk, 0) = max(−(xk), 0) = max((−x)k, 0):

E[(Xk)−] =

∫ ∞
−∞
−min(xk, 0)f(x)dx =

∫ ∞
−∞

max(yk, 0)f(y)dy =

∫ ∞
0

xkf(x)dx,

due to f(x) = f(−x). So for k odd, it is enough to check
∫∞

0 xkf(x)dx <∞. Now consider k ∈ N
even. Then xk ≥ 0 for all x ∈ R. Thus:

E[(Xk)+] =

∫ ∞
−∞

max(xk, 0)f(x)dx =

∫ ∞
−∞

xkf(x)dx

E[(Xk)−] =

∫ ∞
−∞
−min(xk, 0)f(x)dx = 0.
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So for k even, we need to check
∫∞
−∞ x

kf(x)dx < ∞. Adding again the symmetry of f(x), the

expectation becomes

E[(Xk)+] =

∫ ∞
−∞

xkf(x)dx =

∫ ∞
0

xkf(x)dx+

∫ 0

−∞
xkf(x)dx = 2

∫ ∞
0

xkf(x)dx,

since with y = −x and f(x) = f(−x),∫ 0

−∞
xkf(x)dx =

∫ 0

−∞
(−x)kf(−x)dx =

∫ +∞

0
ykf(y)dx.

In other words whether k is odd or not, we only need to check∫ ∞
0

xkf(x)dx < +∞ (32)

in case of X having a symmetric continuous pdf. If it is finite, E[Xk] exists, if it is infinite, E[Xk]

does not exist. This will be used mainly to demonstrate Theorem 3.5 in case of the t-distribution

below.

For the upcoming two subsections we take a lot from Paolella (2006, Chapter 7):

3.2.1 Uniform Distribution

For b > a ∈ R, we denote X ∼ U(a, b), or µX = U(a, b), if µX has the density f : R→ R:

f(x) =
1

b− a
I(a,b)(x), (33)

with IA(x) = 1, if x ∈ A and 0 else. Note that by the example in Remark 7, it does not matter

whether we include a, b or not. If a = 0 and b = 1, then in fact µX = λ|(0,1), the Lebesgue measure

restricted to (0, 1). If a 6= 0 or b 6= 1, we need to renormalize the density however, so that∫ ∞
−∞

f(x) dx =

∫ ∞
−∞

1

b− a
I(a,b)(x) dx =

1

b− a

∫ b

a
dx =

b− a
b− a

= 1.

For x ∈ (a, b), cdf is then given as

F (x) =

∫ x

−∞

1

b− a
I(a,b)(t) dt =

x− a
b− a

,

while F (x) = 0, for x ≤ a and F (x) = 1, for x ≥ b. In other words it can be expressed as:

F (x) =
x− a
b− a

I(a,b)(x) + I[b,+∞)(x). (34)

If (a, b) = (0, 1), then µX((0, x)) = F (x) = x, as we have mentioned before in Theorem 3.2. So

indeed µX = λ|(0,1) on (0, 1). For any k ∈ N, the kth moment is

E[Xk] =
1

b− a

∫ b

a
xkdx =

1

b− a
bk+1 − ak+1

k + 1
.

Despite its simplicity, the distribution has important applications. For example:
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Example 16. Recall again the discussion in Section 3.1, showing that for any random variable X,

F (X) is again a random variable. We have also seen in theorem 3.2 that if Y ∼ Unif(0, 1), and

F is the cdf of some probability µ, then F−1(Y ), with F−1 defined as in (14), has distribution µ.

If F is continuous and strictly increasing (x < y =⇒ F (x) < F (y)), this translates into the fact

that

F (X) ∼ Unif(0, 1).

Indeed this is easy to check: Let Y = F (X), so that Y : Ω → R is a random variable with cdf

FY , then for y ∈ (0, 1):

FY (y) = P ({ω : Y (ω) ≤ y}) = P ({ω : F (X(ω)) ≤ y}) = P ({ω : X(ω) ≤ F−1(y)}) = F (F−1(y)) = y,

while FY (y) = 0 for y ≤ 0 and FY (y) = 1 for y ≥ 1. This is just the cdf of a uniform distribution

on (0, 1). Since the cdf uniquely characterizes a distribution, this means F (X) ∼ Unif(0, 1). ♦

A final note about this distribution; So far we did not explicitly talk about this, but with the

density in (33) we obtain a distribution on (R,B(R)) and not on ((a, b),B((a, b))). This is why

we need to consider values x ≤ a and x ≥ b when looking at the cdf. In that sense µX = λ|(0,1) is

not entirely correct, we should say µX|(0,1) = λ|(0,1), i.e. if both µX and λ are restricted to (0, 1),

then they are the same. To solve this apparent paradox notice that f(x) > 0 only iff x ∈ (a, b).

That is, we only have positive probabilities for subsets of (a, b) or on B((a, b)). The closure of

this set, [a, b], is what we call the support of X. To define this more generally, let for any set A in

a metric or topological space, Ā be its closure, i.e. the smallest closed set including A. Similarly

the interior of A is the largest open set in A and denoted Ao. For instance if A = [a, b) ⊂ R, then

A = [a, b] and Ao = (a, b). Define

Definition 3.6. Let (Ω,A, P ) be a probability space and T a topological space with Borel σ-

algebra B(T ). The support of a A/B(T ) measurable function X : Ω → T , denoted supp(X), is

defined as the smallest closed set C ⊂ T such that

P (X ∈ C) = µX(C) = 1.

This definition is very general, however note that we didn’t talk about a general measurable

space (S,S) here and instead used a topological space T . The reason is that we do not want to

allow for an arbitrary σ-algebra S, but instead only consider the Borel σ-algebra (which is based

on open sets and thus needs a topology). In this context the above definition makes sense, since C

closed is certainly in B(T ). One can show that for continuous random variables like X ∼ U(a, b),

the support of X is also the closure of the set on which f(x) > 0:13

supp(X) = {x ∈ R : f(x) > 0}.
13At least there exists a version of the density such that this is true; Recall that if f is the density of X, then all

g : R → R, such that g = f almost everywhere are also densities for X! So we have a choice in densities and it is

simple to show that we can choose a density f which is zero outside of supp(X) and for this f the equality holds

true.
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As an important remark, whenever we assumed in Section 3.2 that the density f is continuous on

R, it is actually enough that it is continuous on the interior of the support of X. In other words

on the open set supp(X)o = {x ∈ R : f(x) > 0}.14 More concretely, say we know the density f

of X to be continuous on supp(X)o, but we don’t know what it is. We can then obtain it as:

f(x) =

F ′(x), x ∈ supp(X)o

0, x /∈ supp(X)o,

since F ′(x) = f(x) holds for all x for which f(x) is continuous. Clearly for any integration we

undertake, only the set where f(x) > 0 matters. In the same spirit, for Theorem 3.4 and Remark

9 it is enough that the density f is continuous on supp(X)o.

3.2.2 Gaussian Distribution

We denote X ∼ N(0, 1), or µX = N(0, 1), if µX has the density f : R→ R:

f(x) =
1√
2π

exp

(
−x

2

2

)
(35)

There is no closed form solution for the cdf available, yet there is no shortage of implemented

numerical approximations to it. It plays itself an important role, for instance in modelling proba-

bilities as in a probit regression. One can proof that for any k ∈ N, E[Xk] exists.15 Since also the

density is obviously symmetric, we have that X is symmetric around zero. This means for any

k odd, it holds by Theorem 3.4 that E[Xk] = 0. If k is even on the other hand, let r = k/2 ∈ N
(since k is even) so that,

E[Xk] = E[X2r] =

∫ ∞
−∞

x2r 1√
2π

exp

(
−x

2

2

)
dx

=
2√
2π

∫ ∞
0

x2r exp

(
−x

2

2

)
dx

=
2√
2π

∫ ∞
0

(2u)r exp (−u)
1√
2u

du

=
21+r−1/2

√
2π

∫ ∞
0

ur−1/2 exp (−u) du

=
2rΓ(r + 1/2)√

π
,

with u = x2/2 st. x = (2u)1/2 and du = xdx or dx = 1/
√

2u du. One could actually simplify this

further, as done for instance in Paolella (2006, p. 257), but we will content ourselves with the

above expression. Consider as an example k = 2:

E[X2] =
21Γ(1 + 1/2)√

π
=

21/2Γ(1/2)√
π

= 1,

14As a not exam relevant comment; The set M = {x ∈ R : f(x) > 0} is open for f continuous, because any

x ∈M has some small open interval around it with f(y) > 0 for all y in this interval (by continuity of f at x). This

corresponds to the definition of M being open.
15In fact the distribution has so called “light” tails, which in particular implies that all positive moments exist.
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since Γ(a) = (a− 1)Γ(a− 1), for a > 1 and Γ(1/2) =
√
π.

For a ∈ R and σ > 0, from Remark 9, one can surmise that then Y = a+ σX has pdf

f(y) =
1√

2πσ2
exp

(
−1

2

(y − a)2

σ2

)
, (36)

and we say Y ∼ N(a, σ2), or µY = N(a, σ2). For any k ∈ N the moments are given as,

E[Y k] = E[(a+ σX)k] =
k∑
l=0

(
k

l

)
ak−lσlE[X l].

For instance,

E[Y ] = a1 + σE[X1] = a,

and

V(Y ) = E[(Y − E[Y ])2] = E[(σX)2] = σ2E[X2] = σ2.

Many things in statistics are defined in relation to the Gaussian distribution. For instance,

the kurtosis of a given random variable Z, E[(Z − E[Z])4]/(E[(Z − E[Z])2])2 (a measure of tail

thickness) if often defined as the difference from the kurtosis of a Gaussian random variable

Y ∼ N(a, σ2), which is

E[(Y − E[Y ])4]

E[(Y − E[Y ])2]2
= E

[(
Y − a
σ

)4
]

= E[X4] =
22Γ(5/2)√

π
=

223/2Γ(3/2)√
π

=
223/4Γ(1/2)√

π
= 3,

with X = (Y − a)/σ ∼ N(0, 1) and since Γ(1/2) =
√
π. The (excess) kurtosis of Z is then

E[(Z − E[Z])4]

E[(Z − E[Z])2]2
− 3.

The Gaussian distribution arises in a plethora of applications. Informally speaking, this

seems to be related to the central limit theorem; the sum of many independent random variables

has a distribution which is approximately Gaussian. One might surmise that things like the

height of a person are the result of a combination of many independent factors, genetic as well

as environmental influences. However there are situations, in finance for instance, where the

assumption of a Gaussian distribution is not appropriate. In particular it is confined to symmetry,

which does not make sense for returns data for instance. Additionally the tails of the normal

distribution are not heavy, meaning that very extreme events (such as great losses) are deemed

very unlikely.

We will wait with an example until we reach the multivariate case.

3.2.3 Student’s t distribution

For ν ∈ R>0, we denote X ∼ tν , or µX = tν , if µX has the density f : R→ R:

f(x) =
Γ
(
ν+1

2

)
νν/2

√
πΓ
(
ν
2

) (
ν + x2

)−(ν+1)/2
= Kν

(
ν + x2

)−(ν+1)/2
(37)

We again have f(x) = f(−x), so X is symmetric around zero. There are several ways to arrive

at the above density. We will quickly mention the two most important once, without derivations:
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(a) Assume we have a collection of n iid Gaussian random variables (X1, . . . , Xn) with mean

a and variance σ2 all defined on the probability space (Ω,A, P ). This means they are

independent (a notion we did not define yet) and identically distributed, i.e. µX1 = µX2 =

. . . = µXn on (R,B(R)). Define the mean X̄ = 1/n
∑n

i=1Xi ∼ N(a, σ2/n) and estimated

variance S2 = 1
n−1

∑n
i=1(Xi − X̄)2. Then both X̄, S2 are again B(R)/B(R)-measurable

functions from Ω to R (i.e. random variables) and if σ were known

(X̄ − a)√
σ2/n

∼ N(0, 1).

However, it turns out that if we replace the fixed σ2 with the random variable S2 instead,

(X̄ − a)√
S2/n

∼ tn−1. (38)

Imagine you have a “zero” hypothesis about the mean of your data, say you are measuring

some effect with a Gaussian distribution and you want to test: H0 : a = a0 vs. H1 : a 6= a0.

Oftentimes the sample at hand for such tests will have a distribution close to a Gaussian

(or at least that was assumed in classical statistics for some time). Then if H0 were true

T :=
(X̄ − a0)√

S2/n
∼ tn−1,

since we would in this case subtract the correct mean. Thus we know the distribution

(under H0) of our so-called test statistic T : Ω→ R, which is again a measurable function.

If we now find out that for a given realization t = T (ω), P (T > |t|) is “very small”, we

reject the null hypothesis. This is the basis of the relatively simple hypothesis tests from

classical statistics.16

(b) Like many interesting distribution, µX = tν can be attained by a so called continuous

mean-variance mixture. Namely

f(x) =

∫ ∞
0

φ(x; 0, 1/g)fG(g)dg

where φ(x; 0, 1/g) is the density of a Gaussian distribution with mean zero and variance

1/g and fG is the density of a gamma random variable with parameters ν/2 and 2/ν.

This can be interpreted as follows: Given a realization of the gamma random variable

G(ω) = g, X ∼ N(0, 1/g), or X|G = g ∼ N(0, 1/g). Now G is “latent”, that means we

do not observe it and therefore want to integrate it out: As we will see in Section 3.4,

(x, g) 7→ φ(x; 0, 1/g)fG(g) is actually the joint density of Z = (X,G) and integrating over

G gives the marginal density of X. One can then go one to show that this marginal density

is the t distribution.

16Through the magic of the Central limit theorem and the law of large numbers, this is also approximately valid,

if (X1, . . . , Xn) are iid with some unknown distribution (under some moment conditions) for “large” n.
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An analytical solution to the cdf is available in terms of the so called Gaussian hypergeometric

function. It would not be hard to derive this, but to refrain from having to introduce another

such function we will not do this here. What is really nice about the t-distribution, especially

from the point of view of finance, is that the thickness of tails can be varied (or estimated) with

the parameter ν. For ν = 1, we obtain the Cauchy distribution discussed below, a distribution

with such heavy tails that not even the expected value exists. If we let ν ∈ (2, 3], E[X2] exists,

but E[X3] does not. To proof this formally, let us introduce the following notion: If g : R → R
and h : R→ R are two functions, we say g is asymptotically equivalent to h for |x| → ∞, denoted

g ∼ h, if

lim
|x|→∞

h(x)

g(x)
= 1 ⇐⇒ lim

x→+∞

h(x)

g(x)
= 1 and lim

x→−∞

h(x)

g(x)
= 1.

If g, h : [0,+∞), then this condition simplifies to

lim
x→+∞

h(x)

g(x)
= 1.

It then holds that:

Theorem 3.5. Let X ∼ tν . Then for k ∈ N, E[Xk] exists if k < ν and does not exist for k ≥ ν.

In the former case E[Xk] = 0 for all k odd and

E[Xk] =
νk/2

B
(
ν
2 ,

1
2

)B(k + 1

2
,
ν − k

2

)
,

for all k even.

Proof. We will make an argument by studying the “asymptotic behavior” of the density f and

proof that

∫ ∞
0

xkf(x)dx

< +∞, if k < ν

= +∞, if k ≥ ν

This is exactly condition (32), so it is indeed enough to look at this integral as we have demon-

strated above.

Looking at the density in (37) it is clear that f(x) = f(|x|) for all x ∈ R (which is just a

different way of saying f is symmetric) and f(x) = f(|x|) ∼ Kν |x|−(ν+1), since

Kν

(
ν + |x|2

)−(ν+1)/2

Kν |x|−(ν+1)
=

(|x|2)(ν+1)/2

(ν + |x|2)(ν+1)/2
=

(
|x|2

ν + |x|2

)(ν+1)/2

=

(
1

ν/|x|2 + 1

)(ν+1)/2

−→ 1,

as |x| → +∞. So asymptotically speaking f(x) behaves the same as Kν |x|−(n+1). But this also

means that |x|kf(|x|) ∼ Kν |x|k−(n+1). Why could this help? First note that to check condition

(32), it is enough to look at the domain [0,+∞), so we can drop the absolute values and just

state that xkf(x) ∼ Kνx
k−(n+1) for x → +∞. Then xkf(x) ∼ Kνx

k−(ν+1) as x → +∞ means
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by definition of convergence that for any ε > 0 there exists some xε > 0, such that for all x with

x > xε, ∣∣∣∣∣xk
(
ν + x2

)−(ν+1)/2

xk−(ν+1)
− 1

∣∣∣∣∣ ≤ ε
⇐⇒ − ε ≤

xk
(
ν + x2

)−(ν+1)/2

xk−(ν+1)
− 1 ≤ ε

⇐⇒ xk−(ν+1)(1− ε) ≤ xk
(
ν + x2

)−(ν+1)/2 ≤ xk−(ν+1)(1 + ε) (39)

Looking at the integral of interest we have∫ ∞
0

xkf(x)dx =

∫ xε

0
xkf(x)dx+

∫ +∞

xε

xkf(x)dx

= Kν

∫ xε

0
xk
(
ν + x2

)−(ν+1)/2
dx+Kν

∫ +∞

xε

xk
(
ν + x2

)−(ν+1)/2
dx

= Kν((I) + (II)).

Let us first consider (I). For x ∈ [0, xε], h(x) := xk
(
ν + x2

)−(ν+1)/2
and xk−(ν+1) might be very

far apart. However this does not bother us, since h : [0, xε] → R is a continuous function on a

compact set. This means it attains its maximum, say M <∞, on that set, or:

xk
(
ν + x2

)−(ν+1)/2 ≤M for all x ∈ [0, xε].

But then

(I) =

∫ xε

0
xk
(
ν + x2

)−(ν+1)/2
dx ≤

∫ xε

0
Mdx = xεM <∞.

So we can disregard (I) for the purposes of this theorem, as it is certainly finite. Using (39), we

can estimate (II) as

(1− ε)
∫ ∞
xε

xk−(ν+1)dx ≤
∫ ∞
xε

xk
(
ν + x2

)−(ν+1)/2
dx ≤ (1 + ε)

∫ ∞
xε

xk−(ν+1)dx,

by the monotonicity of integrals. So clearly (remember all involved integrals are well-defined),∫ +∞

xε

xkf(x)dx <∞ ⇐⇒
∫ ∞
xε

xk−(ν+1)dx <∞ (40)

Now we can check for an arbitrary sequence (xn)n, with xn ↑ +∞ and xn ≥ x > 0, that for all n,∫ xn

xε

xk−(ν+1)dx =

[log(x)]xnxε = log(xn)− log(xε), if k = ν[
xk−ν/(k − ν)

]xn
xε

= (xk−νn − xk−νε )/(k − ν), if k 6= ν,

which follows because xk−(ν+1) is Riemann integrable on (xε, xn) with a finite integral value, so

the Lebesgue and Riemann integral coincide in this case. If n→∞ (and thus xn →∞) the limit

exists in both cases (since (xn)n is monotone, so are the sequences (log(xn))n and (xk−νn )n), but

they will only be finite iff k − ν < 0, or k < ν. In this case limn x
k−ν = 0 and thus∫ ∞

xε

xk−(ν+1)dx = lim
n

∫ xn

xε

xk−(ν+1)dx = lim
n

xk−νn − xk−νε

k − ν
= − x

k−ν
ε

k − ν
<∞.
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Then combining everything we have∫ ∞
0

xkf(x)dx = Kν((I) + (II)) <∞

iff k < ν.

Since the density f is symmetric, we then immediately know that E[Xk] = 0, for k odd with

k < ν. For k even, first note that, as usual by symmetry

E[Xk] = 2

∫ +∞

0
xkf(x)dx.

Furthermore for simplicity of notation, we write the density in (37) slightly different, in terms of

the B(., .) function:

f(x) =
Γ
(
ν+1

2

)
νν/2

√
πΓ
(
ν
2

) (
ν + x2

)−(ν+1)/2
=

ν−1/2

B
(
ν
2 ,

1
2

) (1 +
x2

ν

)−(ν+1)/2

.

Starting from those two remarks, we then use the (not so obvious) substitution:

y =
x2

ν + x2
, x = +

√
ν

y

1− y
, dx =

ν1/2

2
y−1/2(1− y)−3/2dy,

to get:

E[Xk] = 2
ν−1/2

B
(
ν
2 ,

1
2

) ∫ +∞

0
xk
(

1 +
x2

ν

)−(ν+1)/2

dx

= 2
ν−1/2

B
(
ν
2 ,

1
2

) ∫ +∞

0
xk
(
x2

x2

ν

ν + x2

)(ν+1)/2

dx

= 2
ν−1/2

B
(
ν
2 ,

1
2

) ∫ +∞

0
ν(ν+1)/2xk−2(v+1)/2

(
x2

ν + x2

)(ν+1)/2

dx

= 2
ν−1/2

B
(
ν
2 ,

1
2

) ∫ 1

0
ν(ν+1)/2ν(k−(ν+1))/2

(
y

1− y

)(k−(ν+1))/2

y(ν+1)/2 ν
1/2

2
y−1/2(1− y)−3/2dy

= 2
ν−1/2

B
(
ν
2 ,

1
2

) ∫ 1

0

ν(ν+1)/2ν(k−ν−1)/2ν1/2

2
y(ν+1)/2−1/2+(k−ν−1)/2(1− y)−3/2−(k−ν−1)/2dy

= 2
ν−1/2

B
(
ν
2 ,

1
2

) ∫ 1

0

ν(k−1)/2

2
y(k+1)/2(1− y)(ν−k−2)/2dy

=
νk/2

B
(
ν
2 ,

1
2

) ∫ 1

0
y(k+1)/2(1− y)(ν−k−2)/2dy

=
νk/2

B
(
ν
2 ,

1
2

)B(k + 1

2
,
ν − k

2

)
.

�
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Figure 4: The t and Gaussian distribution fitted to actual logged returns data.

Example 17. It has been shown that (univariate) returns data or portfolio returns can be ac-

curately modeled with t distributions and noncentral versions of it. This is especially true in

times of crisis where the Gaussian or other types of light-tail distributions are no longer able to

capture the high probability of extreme events. As a (more or less random) example consider the

logged returns of the Microsoft Corporation from January 2008 to March 2010. The first picture

in Figure 4 displays histograms of those logged returns over the whole period. The histogram

admits clear signs of a heavy tailed distribution, which is not surprising given this time of crisis.

In the next pictures, a Gaussian and t-distribution were fitted. As expected the Gaussian is not

able to capture the more extreme events and deems it too rare to happen. Note however that,

(i) we implicitly assume to observe an iid. sample if we fit a distribution like this. In this

example this is certainly not true, the daily return obviously depends on the return on

earlier days and the distribution might not be the same each day. However though the

heavy-tailedness is usually less pronounced when accounting for this unrealistic assumption

(say by using a GARCH filter first), a similar pattern often remains.

(ii) the estimated degrees of freedom ν given by Matlab’s “fitdist” routine are still 2.94. If this

value were to be correct, it is at least high enough for both mean and variance to exists.

However E[X3] or E[X4] already would not be defined, in particular we could not calculate

a measure for skewness or kurtosis in this case.

♦

For ν = 1, (37) simplifies to the Cauchy density:

f(x) =
Γ (1)
√
πΓ
(

1
2

) (1 + x2
)−1

=
1

π (1 + x2)
, (41)

since Γ (1) = (1− 1)! = 1 and Γ(1/2) =
√
π. Instead of X ∼ t1 we may also say X ∼ Cauchy in

this case. The cdf is then given as

F (x) =
1

π
arctan(x) + 1/2, (42)

as arctan′(x) = 1/(1 + x2). Since Theorem 3.5 still holds and ν = 1, we see that E[Xk] does not

exist for any k ≥ 1, i.e. the distribution does not even have a mean. If there is reason to assume
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that a sample (X1, . . . , Xn) is iid. Cauchy, then calculating mean or variance does not make any

sense, since the “population” values of these estimates do not exist. In particular, the CLT or

LLN break down and the distribution of X̄ will never approach a Gaussian one.

3.2.4 Gamma Distribution

For α > 0, we denote X ∼ Gam(α, 1), or µX = Gam(α, 1), if µX has the density f : R→ R:

f(x) =
1

Γ(α)
xα−1 exp(−x)I(0,∞)(x). (43)

Thus the support of X is supp(X) = [0,∞) and on the set supp(X)o = (0,∞) f is continuous.

Usually one extends (43) with a scale term β > 0, which, with Remark 9, results in the density:

f(x) =
1

βαΓ(α)
xα−1 exp(−x/β)I(0,∞)(x). (44)

We then say X ∼ Gam(α, β). For x ∈ (0,+∞), using the substitution s = t/β, t = sβ, dt = βds,

the cdf is given as

F (x) =
1

βαΓ(α)

∫ x

−∞
tα−1 exp(−t/β)I(0,∞)(t) dt

=
1

βαΓ(α)

∫ x

0
tα−1 exp(−t/β) dt

=
1

βαΓ(α)

∫ x/β

0
(sβ)α−1 exp(−s)β ds

=
1

Γ(α)

∫ x/β

0
sα−1 exp(−s) ds

=
Γx/β(α)

Γ(α)
, (45)

and F (x) = 0, for x ≤ 0. Clearly limx→+∞ F (x) = 1. To calculate the moments with the scale

term included, we perform the substitution u = x/β, so that dx = βdu. Then for any k ∈ N:

E[Xk] =

∫ ∞
0

xk
1

βαΓ(α)
xα−1 exp(−x/β) dx

=

∫ ∞
0

xα

βαΓ(α)
xα+k−α−1 exp(−x/β) dx

=

∫ ∞
0

uα

Γ(α)
(βu)k−1 exp(−u)β du

=
βk

Γ(α)

∫ ∞
0

uα+k−1 exp(−u) du

=
βkΓ(α+ k)

Γ(α)
.

In particular the expected value is given as E[X] = βΓ(α+ 1)/Γ(α) = βα and since

E[X2] =
β2Γ(α+ 2)

Γ(α)
=
β2(α+ 1)Γ(α+ 1)

Γ(α)
=
β2(α+ 1)αΓ(α)

Γ(α)
= β2α(1 + α),
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the variance is given as:

E[(X − E[X])2] = E[X2]− (E[X])2 = β2α(1 + α)− (βα)2 = β2(α+ α2 − α2) = β2α.

The gamma distribution is extremely flexible and useful in modeling random phenomena

with positive outputs. Moreover as we have seen for the t-distribution (and will see in the next

subsection), one can combine a gamma distribution with Gaussian ones in a mixture, thereby

creating powerful new distributions. Moreover, while there is no straightforward generalization of

the gamma to the multivariate case, these mixtures easily extend to Rd, as we will see in Section

3.4. In fact the gamma distribution is so general, that two important and often used distributions

arise as a special case:

- X follows an exponential distribution, denoted X ∼ Exp(λ) or µX = Exp(λ), if X ∼
Gam(1, 1/λ). From (44) its density is given as,

f(x) = λ exp(−xλ)I(0,∞)(x). (46)

From above

E[Xk] =
Γ(1 + k)

λk
,

and in particular

E[X] =
1

λ

E[X2] =
2

λ2

V(X) = E[X2]− (E[X])2 =
2

λ2
−
(

1

λ

)2

=
1

λ2
.

One application of the exponential distribution is the modeling of lifetimes. In basic statis-

tics one usually talks about the lifetime of components, say a light bulb. In marketing it

is used extensively to model the “lifetime” of a customer ( the “death” of the customer is

the moment he breaks ties with the firm). This is incorporated in probabilistic models of

customer behavior, like the ParetoNBD model. However the exponential distribution has

an interesting feature that has to be considered in the decision whether or not it should be

used as a modeling tool. This is the property of “memorylessness”. Consider t, s ≥ 0, and

imagine we want to find the conditional probability of the event A = {ω : T (ω) > s + t}
given B = {ω : T (ω) > s}. Using the definition of conditional probability in Section (2.3):

P (X > s+ t|X > s) =
P (X > s+ t,X > s)

P (X > s)
=
P (X > s+ t)

P (X > s)

Now for any x ≥ 0,

P (X > x) =

∫ ∞
x

f(t)dt =

∫ ∞
x

λ exp(−tλ)dt = [− exp(−tλ)]∞x = exp(−xλ).
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So:

P (X > s+ t|X > s) =
exp(−(s+ t)λ)

exp(−sλ)
= exp(−tλ) = P (X > t).

To make this more concrete, assume X ∼ Exp(λ) is used to model human life span. Then

the memorylessness property means that the probability that an individual lives for 20 years

more is always the same; The probability that she lives longer than 110, given that she is

already over 90, is the same as the probability that she lives to be over 60, given that she is

over 40, is the same as just the unconditional probability that she lives past 20. In this case

this assumption is clearly not tenable. However in other applications, such as modeling the

lifespan of mechanical components, this might be a good-enough approximation.

- X follows an χ2 distribution with ν degrees of freedom, denoted X ∼ χ2
ν or µX = χ2

ν , if

X ∼ Gam(ν/2, 2). From (44) its density is given as,

f(x) =
1

2ν/2Γ(ν/2)
xν/2−1 exp(−x/2)I(0,∞)(x). (47)

From above

E[Xk] =
2kΓ(ν/2 + k)

Γ(ν/2)
,

and in particular

E[X] = ν

E[X2] = ν(2 + ν)

V(X) = E[X2]− (E[X])2 = ν(2 + ν)− ν2 = 2ν.

The χ2 is important, because it arises in a very peculiar situation; If Y ∼ N(0, 1), then

X = Y 2 has X ∼ χ2
1. Let us quickly proof this with the help of Remark 9. Unfortunately

g : R→ R, g(y) = y2 is not monotone and also not directly invertible (if g(y) = x > 0, then

there are two possibilities, y = +
√
x or y = −

√
x). However, g is strictly decreasing and

invertible on (−∞, 0) and strictly increasing and invertible on (0,+∞), so:

g|(−∞,0) : (−∞, 0)→ (0,∞), g−1
|(−∞,0)(x) = −

√
x,

dg−1
|(−∞,0)(x)

dx
= −x

−1/2

2
< 0

g|(0,+∞) : (0,+∞)→ (0,∞), g−1
|(0,+∞)(x) =

√
x,

dg−1
|(0,+∞)(x)

dx
=
x−1/2

2
> 0.

Moreover the density of Y ∼ N(0, 1) is continuous on these intervals. So we can use the

same approach as in Remark 9, to obtain for x ∈ (0,∞):

FX(x) = P (Y 2 ≤ x) = P (|Y | ≤
√
x) = P (−

√
x ≤ Y ≤

√
x)) = FY (

√
x)− FY (−

√
x)

where the last equality follows from the continuity of FY on R. In other words for x ∈ (0,∞)

FX(x) = FY (g−1
|(0,+∞)(x))− FY (g−1

|(−∞,0)(x)),
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while for x ≤ 0, FX(x) = 0. Since fY is continuous everywhere we can differentiate this

with respect to x to obtain for x ∈ (0,∞):

fX(x) = fY (g−1
|(0,+∞)(x))

dg−1
|(0,+∞)(x)

dx
− fY (g−1

|(−∞,0)(x))
dg−1
|(−∞,0)(x)

dx

= fY (
√
x)
x−1/2

2
+ fY (−

√
x)
x−1/2

2

= 2fY (
√
x)
x−1/2

2
,

where we also used that fY (y) = fY (−y) for all y ∈ R. For x ≤ 0, once again fX(x) = 0.

Putting the density of Y from (35) into this equation finally gives:

fX(x) = 2
1√
2π

exp
(
−(
√
x)2/2

) x−1/2

2
I(0,+∞)

=
1

21/2Γ(1/2)
x1/2−1 exp (−x/2) I(0,+∞),

which is the density of a χ2
1 distribution (and therefore uniquely identifies the distribution

of X to be χ2
1). More generally, if Y1, . . . , Yn are independent N(ai, σ

2
i ) random variables,

then with

Zi =
Yi − a
σ

,

n∑
i=1

Z2
i ∼ χ2

n.

This could for instance easily be proven using characteristic functions.

The importance of the χ2 distribution then often arises not in the direct modeling of real

world phenomena, but instead in the process of constructing statistical tests. For instance,

if we have an iid. sample of Gaussian r.v. (X1, . . . , Xn) with variance σ2, then it can be

shown that (n−1)S2/σ2 =
∑n

i=1(Xi−X̄)2/σ2 ∼ χ2
n−1. Intuitively speaking, estimating the

mean with X̄ costs us one degree of freedom. Related to this, the omnipresent “Wald-test”

in Econometrics is approximately χ2 distributed under H0. This in turn is strongly related

to the F -test. In fact, the F distribution arises as a ratio of two independent χ2 random

variable. See for instance Paolella (2006, Chapter 9).

3.2.5 Variance–Gamma distribution

For λ > 0, α > 0, β ∈ (−α, α) and a ∈ R, we denote X ∼ VG(λ, α, β, a), or µX = VG(λ, α, β, a),

if µX has the density f : R→ R:

f(x) =
2
(
α2−β2

2

)λ
√

2πΓ(λ)

(
|x− a|
α

)λ− 1
2

Kλ− 1
2
(α|x− a|)eβ(x−a), (48)

where

Kν(x) := 1/2

∫ +∞

0
tν−1 exp(−1/2x(t+ t−1)) dt, x > 0

is the modified Bessel function of the third kind, as given for example in Paolella (2007, p. 300).

This distribution is a special case of the even more general “Generalized hyperbolic” (Ghype)
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distribution. As might be surmised from the number of parameters, the VG distribution is

extremely flexible. In fact the more general Ghype distribution is almost too flexible, leading to

estimation problems. This is one of the reasons, why one instead focuses on special cases, such

as the VG distribution, which is easier to estimate and still able to capture complex empirical

distributions.17 One can again show that all positive moments of this distribution exists. Though

we will not go into this, this distribution has so called semi-heavy tails; It means the tails do not

decay exponentially fast as in the Gaussian distribution (light tails), but are also not so heavy

to have some positive moments not existing (such as the t-distribution). Much more interesting

however, is how the distribution arises: Similar as in the case of the t-distribution, let G ∼
Gam(λ, 2/(α2− β2)) (that is where the condition β ∈ (−α, α) comes from). Additionally given a

realization g = G(ω), let X ∼ N(a+βg, g), or somewhat imprecisely: X|G ∼ N(a+βG,G). Then,

integrating out the latent variable G, gives us the marginal distribution of X ∼ VG(λ, α, β, a):

f(x) =

∫ ∞
0

φ(x; a+ βg, g)fG(g)dg.

We will not do these here, but it is not very difficult to show that (48) is the result of the

above integration. This immediately gives a way of simulating variance–gamma random variables

if one can already simulate from the Gaussian and gamma distribution (which could be done

with the method presented in Remark 2): For a given set of parameters, simply draw G ∼
Gam(λ, 2/(α2 − β2)) to give a realization g. Based on this realization draw X ∼ N(a + βg, g).

Doing this say N times gives a sample of n iid. variance gamma distributed random variables.

Though we did not mention this in Section 3.2.3, the same principle can of course be used to

simulate from a t-distribution.

Let us make an informal argument to show what the moments are (the argument itself is

correct, however we did not properly define the involved quantities, so in that sense it is informal):

Let for simplicity a = 0. As mentioned X|G ∼ N(βG,G), and using the law of total expectation,

for k ∈ N:

E[Xk] = E[E[Xk|G]]

= E

[
k∑
l=0

(
k

l

)
(βG)k−l(

√
G)l

2l/2Γ(l/2 + 1/2)√
π

IN∪{0}(l/2)

]

=

k∑
l=0

(
k

l

)
βk−l

2l/2Γ(l/2 + 1/2)√
π

IN∪{0}(l/2)E
[
Gk−lGl/2

]
=

k∑
l=0

(
k

l

)
βk−l

2l/2Γ(l/2 + 1/2)√
π

IN∪{0}(l/2)E
[
Gk−l/2

]
,

=

k∑
l=0

(
k

l

)
2k−l/2Γ(λ+ k − l/2)

(α2 − β2)k−l/2Γ(λ)
βk−l

2l/2Γ(l/2 + 1/2)√
π

IN∪{0}(l/2),

using both the expression for the kth moment of a Gaussian and a gamma distribution. So as

one might have expected, the kth moment of X is a mix of the kth moment of a Gaussian and a

17Note that in standard Matlab, this distribution is not even implemented!
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gamma distribution. In particular

E[X] = β
2Γ(λ+ 1)

(α2 − β2)Γ(λ)
=

2βλ

α2 − β2

E[X2] =
22Γ(λ+ 2)

(α2 − β2)2Γ(λ)
β2 +

2Γ(λ+ 1)

(α2 − β2)Γ(λ)

2Γ(1 + 1/2)√
π

=
4(λ+ 1)λ

(α2 − β2)2
β2 +

2λ

α2 − β2

Before we change to discrete random variables, let us make a few remarks:

- Moments also exist sometimes for k not necessarily in N. For instance, we could calculate

E[
√
X] or any other exponent of X. In particular, k < 0 is possible, so that E[Xk] =

E[(1/X)κ], with κ = −k > 0. For k = 0, we obtain

E[Xk] = E[1] =

∫ ∞
−∞

1f(x)dx = 1.

- Note that with the densities defined in this section we have essentially reduced the problem

of characterizing a probability measure µ on (R,B(R)) to finding a finite set of parameters:

If we know the two parameters a and σ we completely characterized µ if µ is the Gaussian

distribution and analogously for any other distribution we looked at.

- Also note that the common practice to estimate the mean and variance of a given dataset (in

finance and many other areas) loses a lot of its appeal in the case of non-Gaussian data. If the

data were Gaussian, then calculating say X̄ = 1/n
∑n

i=1Xi and S2 = 1/(n− 1)
∑n

i=1(Xi −
X̄)2 as estimators of a and σ2 indeed makes sense. However if the data would be t distributed

say, or worse Cauchy distributed, then trying to estimate the mean or variance does not

make sense (either of them might not even exist). In Finance the Markowitz approach,

which still seems to be in ample use, assumes a multivariate Gaussian distribution of asset

returns. With this assumption it is indeed enough to focus on the mean and variance, and

trying to minimize the latter as a measure of risk. However non-Gaussianity is common

in Stock Market data, especially during times of crisis. Once the Gaussianity assumption

is lifted in favor of more realistic distributions (such as the multivariate Variance–Gamma

distribution below), focussing on mean and variance can no longer be justified.

3.3 Discrete Distributions

3.3.1 Bernoulli and Binomial

3.3.2 Geometric and negative binomial

3.3.3 Poisson

3.4 Multivariate Distributions

We will now change from R to Rd and study random vectors X : Ω→ Rd. In other words

X(ω) = (X1(ω), . . . , Xd(ω)),
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with X1, . . . , Xd defined on Ω. First note that this highlights another great advantage of the

underlying sample space: We can generally take all random variables / vectors / elements under

consideration to be defined on the same measurable space (Ω,A). Since we never actually need to

describe this space, imagination is basically unlimited here. This is important also in the study

of asymptotic behavior, it turns out that one may even define a countably infinite sequence of

random elements on Ω. For instance one can look at iid. random vectors (Xi)i∈N.

Observing the above equation, we can look at X in at least two ways: We can regard it

as a measurable map into the measurable space (Rd,B(Rd)), or we can look at the respective

constituents X1, . . . , Xd and regard (Rd,B(Rd)) as a Cartesian product:

Definition 3.7 (Cartesian Product). Let Ω1,Ω2, . . .Ωd, 1 ≤ d ≤ +∞, be a countable collection

of sets (i.e. finite or countably infinite). The Cartesian product is then then defined as

d∏
i=1

Ωi = {(ω1, . . . , ωd) : ωi ∈ Ωi for all i}.

So the Cartesian product is just the sets of all ordered tuples, where the element at position

i is in the space Ωi. One can then also define such a product of the σ-algebra:

Definition 3.8. Let A1,A2, . . .Ad, 1 ≤ d < +∞, be a countable collection of σ-algebras on the

spaces Ω1,Ω2, . . .Ωd. The product σ-algebra is then defined as the smallest σ-algebra containing

the set

A0 = {A1 ×A2 × . . . Ad : Ai ∈ Ai for all i}. (49)

It turns out that:

Theorem 3.6. The Borel σ-algebra B(Rd) (Remember this is the smallest σ-algebra containing

all open subsets of Rd) has

B(Rd) =
d∏
i=1

B(R).

In other words it is also the smallest σ-algebra containing

{A1 × . . .×Ad : Ai ∈ B(R) for all i}

Recall that Rd is simply defined to be the Cartesian product over d ∈ N copies of R. This

is however not self-evident for the Borel σ algebra, making the above example interesting. We

will however not present a proof here, see for instance Dudley (2002, Proposition 4.1.7). We also

note, that this σ-algebra does exactly what it is supposed to in the following sense:

Theorem 3.7. If Xi : Ω → R, i = 1, . . . , d are A/B(R) measurable maps, then the map ω 7→
X(ω) = (X1(ω), . . . , Xd(ω)) is A/

∏d
i=1 B(R) measurable.

Proof. We want to show that

X−1(B) ∈ A
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for all B ∈
∏d
i=1 B(R). Let us frame this differently, and instead define the set of sets

C = {B ⊂ Rd : X−1(B) ∈ A}.

If we can proof that
∏d
i=1 B(R) ⊂ C, we have automatically shown that the measurability condition

holds! First, we check that

B0 = {B1 ×B2 . . .×Bd : Bi ∈ B(R)} ⊂ C.

In this case for Bi ∈ B(R) arbitrary

X−1(B1 ×B2 . . .×Bd) = {ω ∈ Ω : X(ω) ∈ B1 ×B2 . . .×Bd}

= {ω ∈ Ω : (X1(ω), . . . , Xd(ω)) ∈ B1 ×B2 . . .×Bd}

=

d⋂
i=1

{ω ∈ Ω : Xi(ω) ∈ Bi}

=
d⋂
i=1

X−1
i (Bi) ∈ A.

So indeed B0 ⊂ C. However
∏d
i=1 B(R) is the smallest σ-algebra containing B0. Furthermore, with

the properties of the inverse image it can easily be shown that C is a σ-algebra itself (remember

the conditions from definition 2.1). But then B0 ⊂ C immediately implies that
∏d
i=1 B(R) ⊂ C as

well. �

With Theorem 3.6 this also means that X = (X1, . . . , Xd) is A/B(Rd) measurable when-

ever each Xi is A/B(R) measurable. On the other hand it can also be shown that if X is

A/B(Rd) =
∏d
t=1 B(R) measurable, then each Xi, i = 1, . . . , d is A/B(R) measurable. This is

easily demonstrated by defining for each i the projection πi : Rd → R, πi(x) = xi. In other words

this function just takes out the ith element from x.18 It is easy to show that πi is continuous and

therefore B(Rd)→ B(R) measurable. Since also

Xi = πi ◦X,

we have that Xi is a composition of two measurable functions, and thus itself measurable. Since

this holds for all i = 1, . . . , d, we have with Theorem 3.7:

X = (X1, . . . , Xd) A/B(Rd)-measurable ⇐⇒ Xi A/B(R)-measurable for all i.

A particular interesting example of a Cartesian product is the d-dimensional interval (a cube

for d = 3): Consider for j = 1, . . . , d, the open intervals (aj , bj) with bj > aj . Then the d-

dimensional open interval is given as

(a,b) =

d∏
j=1

(aj , bj) = {x ∈ Rd : aj < xj < bj for all j}.

18In this case this is fairly simple, it is just the dot product of two vectors. It gets however more interesting in

infinite-dimensional products for which this is also possible.
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Similarly we define (a,b], [a,b) and [a,b] as the product of intervals (aj , bj ], [aj , bj) and [aj , bj ]

respectively. The lebesgue measure λ on Rd is then the unique measure assigning each such

interval it’s “length”:

λ((a,b)) = λ((a,b]) = λ([a,b)) = λ([a,b]) =
d∏
j=1

(bj − aj).

In other words, for a rectangle in R3, we just get back the volume. For a B(Rd)/B(R) measurable

function f : Rd → R we can again define the Lebesgue integral∫
A
fdλ =

∫
A
f(x)dx,

for any A ∈ B(Rd). To help connect this back to the case on R, the powerful Fubini-Tonelli

theorem is available:

Theorem 3.8 (Adaptation of Theorem 1.7.2 in Durrett (2010)). Let f : R2 → R be a B(R2)/B(R)

measurable function with f ≥ 0 or
∫
R2 |f | dλ <∞. Then for any A1, A2 ∈ B(R),∫

A1×A2

f dλ =

∫
A1

∫
A2

f(x, y) dxdy =

∫
A2

∫
A1

f(x, y) dydx

Through induction it is easy to check that the above theorem is still true if d > 2, so that for

instance ∫
(a,b]

f(x)dx =

∫ bd

ad

. . .

∫ b1

a1

f(x1, . . . , xd)dx1 . . . dxd.

Similar as on R one can show that there exists a cdf F : Rd → [0, 1] for any random vector

X : Ω → Rd. However this is much more cumbersome, both to proof this result and to actually

use the cdf, see for instance Durrett (2010). In Section 4.2 we will encounter an additional tool

that exists for any random vector on Rd, the characteristic function. Here we instead look at

distributions on (Rd,B(Rd)) with a density f : Rd → R. Both cdf and pdf again completely

characterize the probability, though the former exists for all random vectors.

Definition 3.9 (Definition 12.2 in Jacod and Protter (2004)). The density of a probability

measure µ on (Rd,B(Rd)) is a nonnegative B(Rd)/B(R) measurable function f : Rd → R that has

for all A ∈ B(Rd):

µ(A) =

∫
A
f(x)dx. (50)

If µ is the distribution of a random vector X, then f is called the joint density or joint pdf of

X = (X1, . . . , Xd).

Note that this definition is also valid for the case d = 1 (as usual) and that it indeed consistent

with the one given in Definition 3.4. To proof the next theorem as an analogue to Theorem 3.3

in the case d = 1, we need the following fact: If f : Rd → R, with f(x) ≥ 0 for all x ∈ Rd (i.e. f

is nonnegative) has the condition in (51) fulfilled, then the set function µ2 : B(Rd)→ [0, 1]

µ2(A) =

∫
A
f(x)dx
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is a probability measure. Let us quickly demonstrate this: We need to check that µ2 has (i)

µ2(A) ≥ 0 for all A ∈ B(R), (ii) µ(Rd) = 1 and (iii) countable additivity. (i), (ii) are quite easy,

since f ≥ 0, clearly also means
∫
A f(x)dx ≥ 0 for any A ∈ B(Rd), and since (ii) holds by the

assumption in Equation (51). Let now (An)n be a countable disjoint family of sets in B(Rd).
Then:

µ2

(⋃
n

An

)
=

∫
⋃
n An

f(x)dx

=

∫
Rd
f(x)I⋃

n An
(x)dx

In fact this relation is how
∫
A f(x)dx is defined in the first place, just the integral over the whole

space with the function fIA. Further, because the An’s are disjoint, we have that

I⋃
n An

(x) =

∞∑
n=1

IAn(x).

Again this holds, because x ∈
⋃
nAn and (An)n disjoint means x ∈ An for exactly one n, similar

as in Section 2.2. Thus,

µ2

(⋃
n

An

)
=

∫
Rd
f(x)

∞∑
n=1

IAn(x)dx

=

∫
Rd
f(x) lim

N→∞

N∑
n=1

IAn(x)dx

Now we want to exchange this limit with the integral. This is always a dangerous thing to do, but

luckily we can use either the monotone or dominated convergence theorems, which were already

quickly mentioned in the univariate case. Without going into details, they both tell us that limit

and integral can be exchanged in this case, so that by the linearity of the integral:

µ2

(⋃
n

An

)
= lim

N→∞

∫
Rd
f(x)

N∑
n=1

IAn(x)dx

= lim
N→∞

N∑
n=1

∫
Rd
f(x)IAn(x)dx

=
∞∑
n=1

∫
Rd
f(x)IAn(x)dx

=

∞∑
n=1

µ2(An).

So indeed, since (An)n was disjoint but otherwise an arbitrary sequence in B(Rd), we have shown

countable additivity and finally that µ2 is indeed a probability on (Rd,B(Rd)). This leads to the

following analogue of of Theorem 3.3:
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Theorem 3.9. [ Theorem 12.1 in Jacod and Protter (2004)] A nonnegative B(Rd)/B(R) mea-

surable function f : Rd → R is the density of a probability measure µ on (Rd,B(Rd)) iff it satisfies∫
Rd
f(y)dy =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(y1, . . . , yd) dy1, . . . , dyd = 1. (51)

In this case f entirely characterizes the probability measure.

Proof. As in the case d = 1, if f ≥ 0 is the density of a probability µ on (Rd,B(Rd)), then by

Definition 3.9,

1 = µ(Rd) =

∫
Rd
f(y)dy.

f then uniquely characterizes µ through (50). In particular if f1 is the density of µ1 and f2 of µ2

and f1 = f2, then µ1 = µ2.

Now assume f : Rd → R is nonnegative and has (51). We have shown above that in this case

we can define the new set function µ : B(Rd)→ [0, 1]

µ(A) :=

∫
A
f(y)dy,

and it will indeed be a probability measure. But then the proof is already done, because we have

now found a unique probability measure µ on (Rd,B(Rd)) induced by f (similar as in the proof

of theorem 3.2, where we constructed a measure µX from the cdf F alone). By definition µ has

f as its density. �

Remark 10. Once again we have that a given probability µ only defines its density up to sets of

measure zero. That is if f is the density of µ and g = f on a set A ∈ B(Rd) with λ(Ac) = 0 (i.e.

g = f almost everywhere), then g is also a density of µ, since for all A ∈ B(Rd):∫
A
gdλ =

∫
A
fdλ.

♦

It is of high interest to determine what relation a joint density has to the univariate densities

of each component of X. The following is for simplicity shown for d = 2, but it can again be

easily extended to the case d > 2 by an induction argument.

Theorem 3.10 ( Theorem 12.2 in Jacod and Protter (2004)). Assume X = (X1, X2) has joint

density f : R2 → R. Then

a) Both X1 and X2 have densities on (R,B(R)) given by :

fX1(x1) =

∫ ∞
−∞

f(x1, x2)dx2 fX2(x2) =

∫ ∞
−∞

f(x1, x2)dx1

b) X1 and X2 are independent iff

f(x1, x2) = fX1(x1)fX2(x2) λ-almost everyhwere
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c) We can define another density denoted fX1=x1 : R→ R as

fX1=x1(x2) =
f(x1, x2)

fX1(x1)
,

for all x1 st. fX1(x1) 6= 0.

Proof. a) First note that if for any probability measure P on (Ω,A), if P (A) = 1, for some

A ∈ A, then for any B ∈ A:

P (B) = P (B ∩A) + P (B ∩Ac) = P (B ∩A),

since P (B∩Ac) ≤ P (Ac) = 0. So indeed P (B) and P (B∩A) are the same in this case. Now,

for each B ∈ B(R), it holds that (Remember, both X1 and X2 are defined on (Ω,A, P )),

µX1(B) = P (X−1
1 (B) ∩X−1

2 (R)) = P (X−1(B × R)) = µX(B × R).

But since µX has density f this means that

µX1(B) = µX(B × R)

=

∫
B×R

f(x)dx2dx1

=

∫
B

∫ ∞
−∞

f(x1, x2)dx2dx1,

where we used Fubini in the first step, which we can do since f(x) ≥ 0 for all x ∈ R2. If we

now define the function

fX1(x1) :=

∫ ∞
−∞

f(x1, x2)dx2,

it follows immediately from the above and Definition 3.9 that this is a valid candidate for

the density of X1.

b) We will wait with this part of the proof, until we properly defined independence below.

c) Clearly fX1=x1 : R→ R is nonnegative. Furthermore∫ ∞
−∞

fX1=x1(x2)dx2 =

∫ ∞
−∞

f(x1, x2)

fX1(x1)
dx2

=
1

fX1(x1)

∫ ∞
−∞

f(x1, x2)dx2

=
1

fX1(x1)
fX1(x1)

= 1

So it is indeed a valid density.

�
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An example of c) was given above: For a Gaussian mean variance mixture, we take fX1 to be

the density of a gamma distribution and fX1=x1(x2) to be the density of a Gaussian distribution

whose variance and/or mean depend on x1! Since fX1(x1) > 0 for all x1 > 0, fX1=x1(x2) is

defined for all x1 > 0. We then calculated∫ +∞

0
fX1=x1(x2)fX1(x1)dx1

=

∫ +∞

0
f(x1, x2)dx1

= fX2(x2).

This leads to the following important definition

Definition 3.10. Let a, β ∈ R and x 7→ φ(x; b, σ2) be the density of a Gaussian random variable

with mean b and variance σ2. The random variable X is said to be a continuous mean–variance

mixture if its density fX has representation

fX(x) =

∫ ∞
0

φ(x; a+ βg, g)fG(g)dg (52)

for some continuous random variable G : Ω → R with nonnegative support. Equivalently X has

stochastic representation

X
D
= a+ βG+

√
GZ, (53)

with Z ∼ N(0, 1) and G,Z independent.

For example for the VG distribution we said:

f(x) =

∫ ∞
0

φ(x; a+ βg, g)fG(g)dg,

with G ∼ Gam(λ, 2/(α2 − β2)).

Remark 11. The density fX1=x1(x2) is often denoted f(x1|x2), the conditional density of x1 given

x2. This is justified partly by the following fact: Consider X = (X1, . . . , Xd) a random vector

with joint density f and a subset say Y = (Xi1 , . . . , Xim) for m < d. Then from the above

theorem we may “integrate out” all elements that are not part of Y to obtain fY. It can then be

shown that for any bounded function g : Rd → R the conditional expectation can be calculated

as,

E[g(X)|Y = y] =

∫
Rd−m

g(x)f(x|y)d(xj)j /∈{i1,...,im}. (54)

In particular for d = 2:

E[g(X1, X2)|X1 = x1] =

∫ ∞
−∞

g(x1, x2)f(x2|x1)dx2 (55)

See for instance Jacod and Protter (2004, Chapter 23) or Paolella (2006, Chapter 8.2.3).

Conditional expectations and probabilities of random vectors are actually a generalization

to “regular” expectations and need a surprising amount of work if one wants to define them in
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full generality. In particular, they are defined as random variables, i.e. as measurable functions

on a sub-σ-algebra F ⊂ A on the probability space (Ω,A). Then E[X|F ] is the expected value

of X given the information we have in F . An important example of this is when (Fn)n with

F1 ⊂ F2 ⊂ . . . ⊂ A are so called filtrations. These are σ-algebras with some additional properties

and they model the information available at time point n. They get larger, as we assume to

learn more about the process under consideration with each new time point n. For a A/B(R)

measurable random variable X, we might then ask what E[X|Fn] is.

Finally one can (actually quite easily) show the law of iterated expectations:

EY [E[X|Y ]] = E[X], (56)

where EY means we are taking the expectation with respect to the measure induced by Y . ♦

We will now make a slight change in notation and not only look at x ∈ Rd as a tupel, but

instead define it to be a column vector

x =


x1

...

xd

 =
(
x1 . . . xd

)T

In particular now X(ω) = (X1(ω), . . . , Xd(ω))T . This is the language of linear algebra, and

though we could have continued using a more general notation we change it here for convenience.

Since we are only considering distributions on (Rd,B(Rd)) with densities, we can define ex-

pected values equivalently as in the case d = 1: For g : Rd → R a measurable function, define

E[g(X)+] =

∫
Rd

max(g(x), 0)f(x)dx

E[g(X)−] =

∫
Rd
−min(g(x), 0)f(x)dx.

If both expectations are finite we define

E[g(X)] = E[g(X)+]− E[g(X)−],

exactly as before. Moreover, the expected value of X itself is defined as

E[X] =


E[X1]

E[X2]
...

E[Xd]


if all involved univariate expected values exist. This is in fact the natural extension of the

Lebesgue integral to vector-valued functions and is also used more generally.

An additional complication when talking about distributions on Rd, is that we not just look

at E[Xk
j ], for j = 1, . . . , d, but also at things like E[Xk1

j X
k2
i ] say. Or even E[Xk1

1 Xk2
2 · · ·X

kd
d ].

Of special interest thereby is the case of E[XjXi], which properly standardized is the covariance

between Xj , Xi:
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Definition 3.11. Assume X1, X2 are two random variables with E[X2
1 ],E[X2

2 ] existing. Then we

call

Cov(X1, X2) := E[(X1 − E[X1])(X2 − E[X2])],

the covariance between X1 and X2.

One might notice that the variance is just the covariance between X and itself, so that we

also have a proper definition of the variance now. It is furthermore simple to check that

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] (57)

and in particular V(X) = E[X2]− (E[X])2. If we write down the covariance of each combination

of Xi, Xj we obtain the covariance matrix in the d-dimensional case:

V(X) := E[(X− E[X])(X− E[X])T ] =


V(X1) Cov(X1, X2) . . . Cov(X1, Xd)

Cov(X2, X1) V(X2) . . . Cov(X2, Xd)
...

...
. . .

...

Cov(Xd, X1) Cov(Xd, X2) . . . V(Xd)



From the definition of the covariance, this matrix is obviously symmetric. Moreover it is also

positive semidefinite. Indeed let b ∈ Rd be arbitrary. We want to show that bTΣb ≥ 0. However,

bTΣb is simply the variance of the univariate random variable bTX. That is:

0 ≤ V(bTX) = E[(bTX−E[bTX])(bTX−E[bTX])T ] = bTE[(X−E[X])(X−E[X])T ]b = bTΣb,

proving the claim.

We will now discuss various multivariate distributions. In doing this we will use a somewhat

different presentation as in the univariate case: Instead of directly defining a given distribution

over its density, we will first show how to construct the distribution from univariate ones and then

state the density which comes out of this construction (and which then of course characterizes

the probability measure). This should illustrate that, while it is relatively easy on R to start with

a density when defining a new probability measure, things are more complex in Rd. In particular

in most approaches we need to use univariate distributions in one way or another to construct

multivariate ones.

3.4.1 Independence Distribution

The first multivariate construction we look at is in fact a class of distributions with a certain

dependence structure. That is for any collection of d random variables X1, . . . , Xd we can define

the dependence structure to be, well, independent. This idea of treating dependency structure

and marginal random variables seperately has an important generalization in Copulas, which we

will however not discuss here. See for instance McNeil et al. (2005). The convenient definition of

independence we give here has its roots in the following most important theorem:
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Theorem 3.11. Let µ1, . . . , µd be probability measures on (R,B(R)). Then there exists a unique

probability measure on (Rd,B(Rd)), denoted
∏d
j=1 µj or µ1 × µ2 × . . . µd such that

µ1 × µ2 × . . . µd(A1 × . . .×Ad) =
d∏
j=1

µj(Aj)

for all Aj ∈ B(R), j = 1, . . . , d.

µ1 × µ2 × . . . µd is often referred to as the product (probability) measure. Remember the

discussion in the beginning of this section, where we said that B(Rd) is the smallest σ-algebra

containing the set of sets A0 = {A1 × . . . × Ad : Aj ∈ B(R) for all j}. This theorem now just

says that we can find a probability measure on (Rd,B(Rd)) which factors into the “univariate”

probability on this set A0. Additionally this should have a familiar ring to it by now; We generally

like to define measures on a “small” and well-behaved set like A0, or say I0 = {(−∞, a], a ∈ R}
and then extend it from there to the whole of B(Rd) or B(R). For instance, the result that the

cdf F (x) = µ((−∞, x]) completely characterizes the probability measure µ is akin to saying that

it is enough to define the measure on the set I0 and that it can be uniquely extended to all of

B(R).

Now independence is tightly tied to Theorem 3.11 as mentioned:

Definition 3.12. Let X1, . . . , Xd be random variables with distributions µ1, . . . , µd. Then

X1, . . . , Xd are called independent if X = (X1, . . . , Xd) has distribution
∏d
j=1 µd on

(
Rd,B(Rd)

)
.

Let us first proof b) from Theorem 3.10 above, namely that X1, X2 with joint density f are

independent iff f(x1, x2) = fX1(x1)fX2(x2) λ-almost everyhwere. Indeed if X1, X2 are inde-

pendent, µ(X1,X2) = µ1 × µ2. Since we assumed (X1, X2) to have a joint density, the marginal

densities exists and can be found as in a) above. We then consider the new set function

µnew(A) =

∫
A
fX1(x1)fX2(x2) dx1dx2.

Since fX1(x1)fX2(x2) ≥ 0 the above integral is not only well-defined but we can also use Fubini

to see that

µnew(A1×A2) =

∫
A1×A2

fX1(x1)fX2(x2) dx1dx2 =

∫
A1

fX1(x1)dx1

∫
A2

fX2(x2)dx2 = µ1(A1)µ2(A2),

for all A1, A2 ∈ B(R). In particular µnew(R2) = 1, so µnew is indeed a probability measure. By

theorem 3.11 we immediately know that µnew = µ1 × µ2 = µ(X1,X2). So in fact f and fX1 · fX2

define the same distribution and thus f(x1, x2) = fX1(x1)fX2(x2) λ-almost everyhwere. On the

other hand if f(x1, x2) = fX1(x1)fX2(x2) λ-almost everyhwere, then for A1, A2 ∈ B(R),

µ(X1,X2)(A1×A2) =

∫
A1×A2

f(x1, x2) dx1dx2 =

∫
A1

fX1(x1)dx1

∫
A2

fX2(x2)dx2 = µX1(A1)µX2(A2),

using Fubini. So again we immediately know that µ(X1,X2) is the independence distribution.

In fact, of the crucial peculiarities of the independence distribution is that we can get from

the univariate densities to the joint density. This is a slight reformulation of 3.10 b):
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Theorem 3.12. Let X = (X1, . . . , Xd) be independent. Then X has a joint density fX iff each

Xi has a density fXi. In this case fX(x) =
∏d
j=1 fXi(xj) λ-almost everywhere.

Proof. If X has a joint density fX, we can use exactly the same proof as above for Theorem 3.10

b) to show that fX(x) =
∏d
j=1 fXi(xj) λ-almost everywhere. On the other hand if each Xi has

density fXi , define

fX(x) :=
d∏
j=1

fXi(xj).

Then again by the same argument as above, we see that fX is the density of the independence

distribution. So indeed fX is a density for X. �

Having defined the distribution, we turn to moments. It turns out that, for kj ∈ N ∪ {0}

E[Xk1
1 Xk2

2 · · ·X
kd
d ] = E[Xk1

1 ]E[Xk2
2 ] · · ·E[Xkd

d ]. (58)

if all invovled moments exist. This is in fact true in full generality, that is for any type of random

vector X. However we will only show this for the case that X has a joint density f . Then if

E[X
kj
j ] exists for all kj (for kj = 0 this is again just 1), we have first of all that

E[(X
kj
j )+] < +∞,E[(X

kj
j )−] < +∞

by definition. In particular we also have that

E[|Xkj
j |] = E[(X

kj
j )+] + E[(X

kj
j )−] < +∞.

Thus

E[|Xk1
1 Xk2

2 · · ·X
kd
d |] = E[|Xk1

1 ||X
k2
2 | · · · |X

kd
d |]

=

∫
Rd
|xk11 ||x

k2
2 | · · · |x

kd
d |

d∏
j=1

fXi(xj)dx

=

∫
R
|xk11 |fX1(x1)dx1 · · ·

∫
R
|xkdd |fXd(xd)dxd < +∞

where we again used Fubini in the last step, which is possible because the integrand is nonnegative.

So

E[|Xk1
1 Xk2

2 · · ·X
kd
d |] < +∞

and in particular E[Xk1
1 Xk2

2 · · ·X
kd
d ] exists. Using the same simple calculations again on E[Xk1

1 Xk2
2 · · ·X

kd
d ],

we also immediately get (58).

Independence plays a hugely important role in statistics, not least due to mathematical con-

venience. In classical statistics one often deals with iid. sequences such as encountered in the

examples in Section 3.2. We can now define what this means in full generality:

Definition 3.13. A collection of random variables X1, . . . , Xd is identically and independently

distributed (iid.) if µX1 = µX2 = . . . = µXd and if they are independent.
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We will forego another example here, though we will encounter independence a few more

times in the upcoming sections. Even when working with dependence (such as time series model)

a good proxy is to choose a model allowing to transform a dependent series into an independent

one. For instance, using a GARCH or ARMA filter should in theory result in residual terms that

are iid.

3.4.2 Multivariate Gaussian Distribution

There are many ways of actually constructing (the same) multivariate Gaussian distribution. For

instance, in Jacod and Protter (2004, Chapter 16) it is defined as the (unique) distribution, such

that all linear combinations of a random vector with that distribution are univariate Gaussian

again, i.e. X is said to have multivariate Gaussian distribution if aTX is univariate Gaussian

for all a ∈ Rd. We will start differently, but then show that this holds indeed true also for our

definition.

Definition 3.14. Let Z1, . . . , Zd be iid. N(0, 1) and Z = (Z1, . . . , Zd)
T . Let a ∈ Rd and Σ be a

symmetric positive semi-definite d× d matrix. Then we say Y ∼ N(a,Σ) or µY = N(a,Σ), if

Y
D
= a + Σ1/2Z.

By the above definition: Z ∼ N(0, I), with I being the matrix with all ones on the diagonal.

Remark 12. Σ1/2 is a d×d matrix such that Σ1/2(Σ1/2)T = Σ. How would we find such a matrix?

If Σ is diagonal, i.e. Σ = diag(σ11, . . . , σdd), for σii ≥ 0, then the answer is easy, simply take:

Σ1/2 = diag(
√
σ11, . . . ,

√
σdd).

In general, we need to use tools from linear algebra: Since Σ is symmetric it has an eigendecom-

position:

Σ = UΛUT ,

where U is an orthogonal matrix (i.e. UUT = UTU = I) containing the eigenvectors of Σ, and

Λ is a diagonal matrix with the eigenvalues of Σ as its diagonal. Then the fact that Σ is positive

semi-definite translates into the fact that Λii ≥ 0 for all i = 1, . . . , d. But that means we may

take Σ1/2 to be

Σ1/2 = UΛ1/2 = U diag(
√
λ11, . . . ,

√
λdd),

so that

Σ1/2(Σ1/2)T = UΛ1/2Λ1/2UT = UΛUT = Σ.

Continuing this, if Σ is also positive definite (which is stronger than positive semi-definite), then

in fact Λii > 0 for all i = 1, . . . , d. In this case we can also easily find an inverse of Σ, as

Σ−1 = (UΛUT )−1 = UΛ−1UT ,
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has Σ−1Σ = ΣΣ−1 = I (again because UUT = UTU = I). Similarly, since also
√

Λii > 0, we can

do exactly the same thing to get the inverse of Σ1/2 in this case, i.e.

Σ−1/2 := (UΛ1/2)−1 = Λ−1/2UT = diag(λ
−1/2
11 , . . . , λ

−1/2
dd )UT ,

so that Σ−1/2Σ1/2 = Σ1/2Σ−1/2 = I. Additionally it also holds that

(Σ−1/2)TΣ−1/2 = UΛ−1UT = Σ−1,

which we will use in a minute. Both facts again hold since UTU = UUT = I. ♦

Finding the density of Y according to the above definition is then actually not very hard with

the right tools: It derives from a very general and powerful transformation theorem, which is the

multivariate analog of the formula presented in Remark 9. Using this it turns out that for B

being a positive definite (and thus invertible) matrix and b ∈ Rd, Y = b +BZ has density:

fY(y) =
1

det(B)
fZ
(
B−1(y − b)

)
, (59)

which indeed simplifies to (31) in the case d = 1. Additionally we know that by construction (i.e.

independence)

fZ(z) =

d∏
i=1

fZi(zi) =

d∏
i=1

1√
2π

exp

(
−z

2
i

2

)
=

1

(2π)d/2
exp

(
−

d∑
i=1

z2
i

2

)
=

1

(2π)d/2
exp

(
−zT z

2

)
.

Using (59) with B = Σ1/2 we then get the density of a multivariate Gaussian random vector:

fY(y) =
1

(2π)d/2 det(Σ1/2)
exp

(
−(Σ−1/2(y − a))TΣ−1/2(y − a)

2

)

=
1

(2π)d/2 det(Σ1/2)
exp

(
−(y − a)T (Σ−1/2)TΣ−1/2(y − a)

2

)

=
1

(2π)d/2 det(Σ1/2)
exp

(
−(y − a)TΣ−1(y − a)

2
.

)
(60)

Note that this generalizes the case d = 1 in (36), as then Σ = det(Σ) = σ2. Also note that this

makes sense since indeed:

E[Y] = E[a + Σ1/2Z] = a + Σ1/2E[Z] = a,

and

V(Y) = E[(Y − a)(Y − a)T ] = E[Σ1/2Z(Σ1/2Z)T ] = Σ1/2E[ZZ](Σ1/2)T = Σ1/2(Σ1/2)T = Σ.

Finally, from how we constructed the distribution (and from (60)) it can be seen that the

elements in Y are independent iff Σ = V(Y ) is diagonal. In other words if we consider d=2 and

if (X1, X2) are jointly Gaussian:

X1, X2 independent ⇐⇒ Cov(X1, X2) = 0.
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However it should be clear that this need not hold in general, and in fact for mixture distributions

defined below it is not true.

There are numerous example of the multivariate Gaussian distribution in action. We will

focus on a very practical and direct applicaton:

Example 18 (Gaussian Bayes Classifier). Assume we observe a discrete random variable Y : Ω→
R, with support supp(Y ) = {1, . . . ,K}, for some K ∈ N. In this example, these are the group

labels of K different groups. Given a realization Y (ω) = y we define the conditional density as

in Theorem 3.10, as

fY=y(x) =
1

(2π)d/2 det(Σy)
exp

(
−

(x− ay)
TΣ−1

y (x− ay)

2

)
, (61)

i.e. X|Y = y ∼ N(ay,Σy) for y ∈ {1, . . . ,K}. Further assume that for each group y, we have an

iid. sample X1,y, . . . ,Xny ,y with Xi,y ∼ N(ay,Σy). So for each y, there is a sample of ny, giving

a total of

n =

K∑
y=1

ny

observations.

Usually the parameters (ay,Σy)
K
y=1 are not known. However they can easily be estimated

using the standard approach for each group, that is for each y:

X̄y =
1

ny

ny∑
i=1

Xi,y

Sy =
1

ny

ny∑
i=1

(
Xi,y − X̄y

) (
Xi,y − X̄y

)T
.

Now for a new point (i.e. a so far unclassified realization) X(ω) = x the classifier uses the Bayes

approach to find the most likely group y x belongs to. That is we want to maximize the posterior

probability :

Px(Y = y) :=
fY=y(x)P (Y = y)

f(x)
. (62)

Now f(x) is the marginal density of X, which is given as:

f(x) =
K∑
y=1

P (Y = y)fY=y(x),

i.e. a finite mixture of Gaussian distributions. However we do not need this, since in the opti-

mization with respect to y it is just a constant. That is:

arg max
y

Px(Y = y) = arg max
y

fY=y(x)P (Y = y).

Now with the estimated parameters, we know what fY=y(x) is, but we do not know P (Y = y)

yet. However we can also easily estimate it from the data! The reason is that actually P (Y =
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y) = P ({ω : Y (ω) = y}) = E[I{ω:Y (ω)=y}], so that for n realizations (yi)
n
i=1 of Y , a consistent

estimator, say py, is simply

py =
1

n

n∑
i=1

I{y}(yi) =
ny
n
.

Thus finally we have all ingredients together and can find the label of the point x, say yx as:

yx = arg max
y∈{1,...,K}

fY=y(x)py.

This simple classifier is easy to implement and works extremely well. The special case where

Σy = I for all y is called naive Bayes classifier. It is naive, because it assumes independence

between the elements of Xi,y, which is often not true. However as usual in statistics, a simple

model can outperform a more complex one, especially if there is no abundance of data (complexity

of the model vs estimation error). Indeed naive Bayes is often used and works remarkably well,

even compared to more sophisticated algorithms! ♦

Finally, having defined the multivariate Gaussian, we can also define multivariate mixture

densities:

Definition 3.15. Let a,β ∈ Rd and Σ be a positive definite matrix. Let furthermore x 7→
φ(x; a,Σ) be the density of a Gaussian random vector with mean a and variance Σ. The random

vector X is said to be a multivariate continuous mean–variance mixture if its density fX has

representation

fX(x) =

∫ ∞
0

φ(x; a + βg, gΣ)fG(g)dg (63)

for some continuous random variable G : Ω → R with nonnegative support. Equivalently X has

stochastic representation

X
D
= a + βG+

√
GΣ1/2Z, (64)

with Z ∼ N(0, I) and G,Z independent.

This highlights a convenient way of getting complex multivariate distributions. In fact, both

remaining subsections of this script are not much more than a direct application of Definition

3.15.

3.4.3 Multivariate t-Distribution

Let ν > 0, a ∈ Rd and Σ a positive definite matrix, as before. We say X ∼ tν(a,Σ) or µX =

tν(a,Σ) if X is a multivariate continuous mean–variance mixture with G following an inverse

gamma distribution and β = 0. In other words

X
D
= a +

√
GΣ1/2Z,

with G being “inverse gamma” with parameters α = β = ν/2 . We did not talk about the inverse

gamma distribution, though we can define it like this: For α, β > 0, we say Y ∼ IGam(α, β), if
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Y −1 ∼ Gam(α, 1/β). With the tools we described for finding the density of a transformation of

a random variable, one could then go on to find the density of this new distribution on (0,+∞).

However since we derived everything for the gamma distribution, we instead use this definition

to get another stochastic representation of X, namely:

X
D
= a + G̃−1/2Σ1/2Z,

with G̃ ∼ Gam(ν/2, 2/ν). This is exactly the setting we presented in the univariate case, see

Section 3.2.3. In fact for d = 1 we obtain a tν distribution which is augmented by a location a

and scale term σ (just as we did in case of the Gaussian distribution). That is if Y ∼ tν , then

X = a+ σY .

Since E[X] exists iff E[Xi] for i = 1, . . . , d exists, we can use Theorem 3.5 to see that for ν > 1,

E[X] exists and from either one of the two stochastic representation:

E[X] = E[a +
√
GΣ1/2Z]

= E[E[a +
√
GΣ1/2Z|G]]

= E[a +
√
GΣ1/2E[Z|G]]

= a.

With a similar argument, we see that V(X) exists if ν > 2 and in this case:19

V(X) = E[(X− a) (X− a)T ]

= E[E[
√
GΣ1/2Z(

√
GΣ1/2Z)T |G]]

= E[GΣ1/2E[ZZT |G]Σ1/2]

= E[G]Σ

=
ν

ν − 2
Σ,

since for G being IGam(ν/2, ν/2), E[G] = ν/(ν − 2). To see the latter with what we derived,

simply take again G̃ ∼ Gam(ν/2, 2/ν), so that E[G] = E[G̃−1], and use the general expression of

moments we derived for the Gamma distribution:

E[Y k] =
βkΓ(α+ k)

Γ(α)
,

if Y ∼ Gam(α, β). This was originally only for k ∈ N. However for k < 0 one can show that as

long as ν/2 > −k, E[Gk] exists (this is of course tightly connected to the condition derived for

the t distribution). The preceding expression then arises from the same calculations as we did in

Section 3.2.4. In our case k = −1, and by assumption ν/2 > 1 = −k, and thus we obtain

E[G̃k] = E[G̃−1] =
(2/ν)−1Γ(ν/2− 1)

Γ(ν/2)
=

νΓ(ν/2− 1)

2(ν/2− 1)Γ(ν/2− 1)
=

ν

2(ν/2− 1)
=

ν

ν − 2
.

19Remember: E[X2
i ] exists for all i = 1, . . . , d, iff ν > 2. This means the variance exists and one can show that

it also implies that E[XiXj ] exists for all i 6= j. But this immediately implies that the covariance between Xi and

Xj exists as well.
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Note that the univariate mixing variable induces dependencies between the elements of X,

even if Σ = I, i.e. even if Σ is diagonal! This is an important feature of the multivariate t (and of

such mixture distributions in general). It is also a nice case for which we see that Cov(X1, X2) = 0

does not at all imply that X1, X2 are also independent.20

Finally solving the integral

f(x) =

∫ ∞
0

φ(x; a, gΣ)fG(g)dg

one obtains the joint density of X as:

f(x) =
Γ((ν + d)/2)

Γ(ν/2)νd/2πd/2 det(Σ1/2)

(
1 +

1

ν
(x− a)T Σ−1 (x− a)

)−(ν+d)

. (65)

We will prove an important and very useful fact about this distribution once we get to charac-

teristic functions. This is the fact that if X ∼ tν(a,Σ) and w ∈ Rd, then wTX ∼ tν(wTa,wTΣw).

3.4.4 Multivariate Variance–Gamma Distribution

Let λ > 0, α > 0, β ∈ Rd such that
√
βTβ ∈ (−α, α), a ∈ Rd and Σ a positive definite matrix.

We denote X ∼ MVG(λ, α,β,a,Σ) or µX = MVG(λ, α,β,a,Σ) if X is a multivariate continuous

mean–variance mixture with G following a Gamma distribution. In other words

X
D
= a +Gβ +

√
GΣ1/2Z,

with G ∼ Gam
(
λ, 2/(α2 − βTβ)

)
.

Since all positive moments of the univariate VG distribution exist, we also know that E[X]

and V(X) exists and we can find them as in Section 3.4.3. That is, for the expected value:

E[X] = E[a + βG+
√
GΣ1/2Z]

= E[E[a + βG+
√
GΣ1/2Z|G]]

= E[a + βG+
√
GΣ1/2E[Z|G]]

= a + βE[G]

= a +
2λβ

α2 − βTβ
.

Similarly one could calculate

V(X) = E

[(
X− a− 2λβ

α2 − βTβ

)(
X− a− 2λβ

α2 − βTβ

)T]
.

20Though the other way around is true, since (if all involved moments exist)

Cov(X1, X2) = E[X1X2]− E[X1]E[X2] = E[X1]E[X2]− E[X1]E[X2] = 0.
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Note that for β = 0, the exact same steps as in Section 3.4.3 give:

V(X) = E[(X− a) (X− a)T ]

= E[G]Σ

= λ
2

α2
Σ.

Again solving the integral

f(x) =

∫ ∞
0

φ(x; a + gβ, gΣ)fG(g)dg

one obtains the joint density of X as:

f(x) =
2
(
α2−βTβ

2

)λ
(2π)d/2 det(Σ1/2)Γ(λ)

(
(x− a)TΣ−1(x− a)

α2

)(λ−d/2)/2

Kλ−d/2

(
α
√

(x− a)TΣ−1(x− a)

)
exp(βT (x− a)), (66)

which is a very natural generalization of the density in (48).

4 Selected Topics

4.1 Integration with respect to a Probability Measure (optional)

We construct the integral with respect to a probability measure (i.e. the Lebesgue integral) as

in Jacod and Protter (2004, Chapter 9): Let as usual (Ω,A, P ) be a probability space. We first

define expectation for a simple random variable or function:

Definition 4.1. A r.v. X : Ω→ R is simple if it takes on only a finite number of values in R.

A simple r.v. X can always be written in the form:

X(ω) =
n∑
i=1

aiIAi(ω) ∀ω ∈ Ω

with ai ∈ R and Ai ∈ A, (Ai)
n
i=1 a disjoint sequence. Indeed since X is simple it only takes on say

n real values (ai)
n
i=1. If we take Ai = {ω ∈ Ω : X(ω) = ai} = X−1({ai}), then, since {ai} ∈ B(R)

and X is measurable, Ai ∈ A. It is then easy to check that the above equality holds for each

ω. Note however that there are many different such sum representations for X. As an example,

consider X = a, i.e. X takes on only one value. Then for some A ∈ A:

X = aIΩ and X = aIA + aIAc ,

are valid representations. Also note that we can without loss of generality always assume that⋃n
i=1Bi = Ω (in addition to (Bi)

n
i=1 being disjoint). If this is not the case, i.e.

n⋃
i=1

Bi ⊂ Ω,
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with strict inclusion, we can just take bn+1 = 0 and Bn+1 = Ω \
⋃n
i=1Bi and have

X =

n+1∑
i=1

biIBi .

We now define the integral with respect to P over this simple function:

Definition 4.2. The integral of a simple r.v. X with respect to P is given as∫
Ω
X(ω)dP (ω) =

n∑
i=1

aiP (Ai).

Thus P enters in this integral definition as the measure of the sets Ai. Let us now check that

Definition 4.2 expression makes sense; That is if we have two sum representations of X, say

X =

n∑
i=1

aiIAi and X =

m∑
j=1

bjIBj ,

again with ai, bi ∈ R and Ai, Bi ∈ A, then we would like the resulting integral to be the same

(otherwise it depends on the representation of X, and is thus not “stable”)! Using what we

have said above, we can assume (Ai)
n
i=1 and (Bi)

n
i=1 disjoint to have Ω as their union (in other

words they partition Ω). Then, whenever we have that Al ∩ Br 6= ∅ for some l ∈ {1, . . . , n},
r ∈ {1, . . . ,m}, it must be that al = br. Indeed, if ω ∈ Al ∩Br,

al =

n∑
i=1

aiIAi(ω) = X(ω) =

m∑
j=1

bjIBj (ω) = br.

Additionally for any i, Ai =
⋃m
j=1(Bj ∩ Ai), and symmetrically for any j, Bj =

⋃n
i=1(Bj ∩ Ai).

Thus

n∑
i=1

aiP (Ai) =

n∑
i=1

aiP

 m⋃
j=1

(Bj ∩Ai)


=

n∑
i=1

ai

m∑
j=1

P (Bj ∩Ai)

=

m∑
j=1

n∑
i=1

aiP (Bj ∩Ai)

Now either P (Bj ∩Ai) = P (∅) = 0, in which case we can set ai = bj without changing anything

or P (Bj ∩Ai) > 0 and in this case ai = bj anyway, so

n∑
i=1

aiP (Ai) =

m∑
j=1

bj

n∑
i=1

P (Bj ∩Ai)

=
m∑
j=1

bjP (Bj) .
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So indeed the integral has the same value, no matter what kind of characterization we choose.

Since it does not matter for the integral what kind of sum representation we choose for X,

we can play around with this to show some interesting things: For example if we have two simple

r.v. X,Y with

X =
n∑
i=1

aiIAi and Y =
m∑
j=1

bjIBj ,

simply choose a new representation for X and Y , by using the collection of sets

Ci,j = Ai ∩Bj , i = 1, . . . , n, j = 1, . . . ,m.

This is still a finite collection and now:

X =
∑
i,j

ai,jICi,j and Y =
∑
i,j

bi,jICi,j ,

i.e. X,Y still have different values, but are now represented by the same sets.21 But then∫
Ω
X(ω) + Y (ω)dP (ω) =

∑
i,j

(ai,j + bi,j)P (Ci,j)

=
∑
i,j

ai,jP (Ci,j) +
∑
i,j

bi,jP (Ci,j)

=

∫
Ω
X(ω)dP (ω) +

∫
Ω
Y (ω)dP (ω).

Also it quite obviously always holds that for any number s ∈ R:∫
Ω
sX(ω)dP (ω) = s

∫
Ω
X(ω)dP (ω).

In summary, the integral we defined is linear for simple functions, that is∫
Ω
sX(ω) + tY (ω)dP (ω) = s

∫
Ω
X(ω)dP (ω) + t

∫
Ω
Y (ω)dP (ω),

for X,Y simple r.v. and any s, t ∈ R. Finally if

X(ω) ≤ Y (ω) for all ω ∈ Ω,

then in fact (if we take again a finite sum representation with the same sets), ai ≤ bi for all

i = 1, . . . , n and ∫
Ω
X(ω)dP (ω) ≤

∫
Ω
Y (ω)dP (ω),

so the integral is monotone.

Next we define the integral for nonnegative random variables X: If X : Ω→ R is has X(ω) ≥ 0

for all ω ∈ Ω, we define:∫
Ω
X(ω)dP (ω) = sup

{∫
Ω
Y (ω)dP (ω) : Y is a simple r.v. with 0 ≤ Y ≤ X

}
. (67)

21Note that again the sets (Ci,j)i,j are disjoint because the (Ai)i = 1n and (Bj)
n
j=1 are. In general, if A1, A2 and

B1, B2 are disjoint, then so are A1 ∩B1 and A2 ∩B2.
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So we take the supremum over the set of integral values (which are simply values in R) over

simple functions smaller than X. Since the integral over the simple function Y = 0 is always part

of the above set, it is never empty and the supremum well-defined!22 This is the reason that,

while the supremum might be +∞, it and thus
∫

ΩX(ω)dP (ω) is always defined. From this we

can also immediately define the integral for general random variables (or equivalently A/B(R)

measurable functions). In fact we have seen this definition already in Section 3.2:

Definition 4.3. Let X : Ω→ R be a r.v. and define (pointwise for each ω ∈ Ω)

X+ = max(0, X)

X− = −min(0, X).

Then X+, X− ≥ 0 are A/B(R) measurable as well and we say the integral of X with respect to

P exists if ∫
Ω
X+(ω)dP (ω) =

∫
Ω

max(0, X(ω))dP (ω) <∞∫
Ω
X−(ω)dP (ω) =

∫
Ω
−min(0, X(ω))dP (ω) <∞.

In this case, we define∫
Ω
X(ω)dP (ω) =

∫
Ω
X+(ω)dP (ω)−

∫
Ω
X−(ω)dP (ω). (68)

As a remark; it would actually be enough to assume that just one of the two conditions∫
Ω
X+(ω)dP (ω) =

∫
Ω

max(0, X(ω))dP (ω) <∞∫
Ω
X−(ω)dP (ω) =

∫
Ω
−min(0, X(ω))dP (ω) <∞.

is true. So one of the two could be infinity and (68) would still be valid. We follow a different

convention however and dictate that both need to be finite. If it exists then the expectation of

X : Ω→ R, is simply the integral over X with respect to P :

E[X] :=

∫
Ω
X(ω)dP (ω) = E[X+]− E[X−].

We can then state the beautiful properties of this integral notion (doing this using the expec-

tation notation to make things shorter). First we need an important result:

Theorem 4.1. If X : Ω → R is a nonnegative random variable, then there exists a monotone

sequence of simple random variables (Xn)n∈N with

Xn(ω) ↑ X(ω) ∀ω ∈ Ω.

Furthermore, for any increasing sequence of nonnegative simple r.v. (Xn)n with Xn ↑ X pointwise

it is true that

E[Xn] ↑ E[X].
22Recall that any nonempty subset of R has a supremum, which is either itself part R or +∞.
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We will not prove this, but just say that a candidate for such an Xn is given in Jacod and

Protter (2004, p. 53) as:

Xn(ω) =

k2−n if k2−n ≤ X(ω) < (k + 1)2−n for a k, 0 ≤ k ≤ n2n − 1

n if X(ω) ≥ n
.

(there either is exactly one k ≤ n2n − 1 such that the first condition is true, or X(ω) ≥ n). One

can then show that for all ω ∈ Ω: Xn(ω) ≤ Xn+1(ω) for all n, that Xn(ω) ↑ X(ω) and that

E[Xn] ↑ E[X], as n → ∞. In fact, as the theorem states, for any sequence of simple functions

with these properties E[Xn] ↑ E[X] holds. However much more interesting then the proof is the

result itself! It allows to extend results for simple random variables to general ones. This is what

it is sometimes referred to as “measure theoretic induction”:

Step 1: Show that something holds for the simplest random variable X = IA, for some A ∈ A.

Step 2: Show that it holds for linear combinations of indicator functions,

n∑
i=1

aiIAi , ai ∈ R, Ai ∈ A,

in other words that it holds for all simple functions.

Step 3: Show that it holds for all nonnegative r.v. by utilizing Theorem 4.1.

Step 4: Show that it holds for any r.v. X with existing expectation, by taking X = X+ −X− and

using the fact that X+, X− are nonnegative.

This technique will in part be used in the upcoming Theorem 4.2 and especially in Theorem

4.5.

Theorem 4.2 (Theorem 9.1 in Jacod and Protter (2004)). Let throughout X and Y be two

random variables with existing expectation/integral and a ∈ R be arbitrary. Then

(a) E[X+Y ] = E[X]+E[Y ] and E[aX] = aE[X], i.e. expectation is a linear map. Furthermore

it is monotone, that is if Y ≤ X, then E[Y ] ≤ E[X].

(b) The expectation of X exists iff E[|X|] exists and |E[X]| ≤ E[|X|]

(c) If X = Y P -as., i.e. if there exists a set A ∈ A with P (A) = 1 and such that for all ω ∈ A,

X(ω) = Y (ω), then E[X] = E[Y ].

Proof. Proof missing

�

We can even state the beautiful convergence theorems now, that make the Lebesgue integral

so powerful:
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Theorem 4.3. If Xn : Ω→ R, n ∈ N are a collection of r.v. with (Xn)n

(i) nonnegative (i.e. Xn(ω) ≥ 0 for all ω and n)

(ii) increasing (i.e. Xn(ω) ≤ Xn+1(ω) for all ω and n),

then

lim
n

∫
Ω
Xn(ω)dP (ω) =

∫
Ω

lim
n
Xn(ω)dP (ω).

This is true even if E[X] = +∞.

Theorem 4.4. Let Xn : Ω → R, n ∈ N, be a sequence of r.v. with (Xn)n converging pointwise

to some r.v. X, i.e. limnXn(ω) = X(ω) for all ω ∈ Ω. Let furthermore Y ≥ 0 be a r.v. with

existing expectation, i.e. E[Y ] < +∞ and

|Xn| ≤ Y for all n ∈ N.

Then

lim
n

∫
Ω
Xn(ω)dP (ω) =

∫
Ω
X(ω)dP (ω).

Remark 13. One can show that if limnXn(ω) = X(ω) for all ω ∈ Ω the measurability of X is

automatically guaranteed. So in both the monotone and the dominated convergence theorem,

measurability of limnXn is not an issue. ♦

Now one interesting question that remains is the following: Say we are interested in the

expected value of a function g : R → R of X. Then g ◦X : Ω → R is a r.v. and we defined its

expectation to be

E[g(X)] = E[g ◦X] =

∫
Ω
g ◦X(ω)dP (ω).

Also recall that we defined the probability on (R,B(R)) induced by X, as µX(B) = P (X−1(B))

for all B ∈ B(R). One of the big advantages of this change in measure, was that we could forget

about Ω and focus on the nicer space (R,B(R)). So the looming question is: Can we now make

the above integration over Ω into one over R? It turns out that indeed we can:

Theorem 4.5. Let (Ω,A, P ) be a probability space and (S,S) be a measurable space, X : Ω→ S

be A/S measurable and g : S → R, be S/B(R) measurable. Further, let as usual µX be the

distribution of X on S. Then

E[g(X)] =

∫
Ω
g ◦X(ω)dP (ω) exists ⇐⇒

∫
S
g(x)dµX(x) exists

and in this case

E[g(X)] =

∫
Ω
g ◦X(ω)dP (ω) =

∫
S
g(x)dµX(x). (69)

Proof. Proof missing �
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If one takes (S,S) = (Rd,B(Rd)) and substitutes X : Ω→ Rd for X in the above theorem, it

follows that if E[g(X)] exists,

E[g(X)]=

∫
Ω
g(X(ω))dP (ω)=

∫
Rd
g(x)dµX(x),

which is Equation (70) in the next section. Finally we can also state the Fubini Theorem in full

generality, for any product measure:

Theorem 4.6 (Theorem 1.7.2 in Durrett (2010)). Let (S1,S1, P1), (S2,S2, P2) be arbitrary prob-

abilty spaces and P1 × P2 the product probability measure as in Theorem 3.11. Further, let

X : S1×S2 → R be a S1×S2/B(R) measurable function with X ≥ 0 or
∫
S1×S2

|X| dP1×P2 <∞.

Then ∫
S1×S2

X dP1 × P2 =

∫
S2

∫
S1

X dP1dP2 =

∫
S1

∫
S2

X dP2dP1.

In fact all that was said above remains valid in the same way if we consider the Lebesgue

measure λ on (Rd,B(Rd)) instead of a probability measure (the main difference between a proba-

bility measure and the measure λ being that the latter has λ(R) =∞). So the Lebesgue integral

with the Lebesgue measure we used throughout the lecture is also constructed in exactly this way

and has the same properties with essentially the same proofs. The key thing here is that though

λ(R) =∞, the Lebesgue measure is still “σ-finite”, a concept we will however not discuss here.

4.2 Characteristic Functions

We note that the Lebesgue integral we used so far can in fact not only be defined for the Lebesgue

measure λ, but also for any other (probability measure). In this spirit we will from now on

sometimes use the notation

E[g(X)]
(1)
=

∫
Ω
g(X(ω))dP (ω)

(2)
=

∫
Rd
g(x)dµX(x). (70)

In fact (1) is how expectation is actually defined, while (2) would need to be proven. This

change of notation should stress the generality of the definitions to come. However in the case of

continuous random vectors, it “simplifies” back to what we know:

E[g(X)] =

∫
Rd
g(x)dµX(x) =

∫
Rd
g(x)f(x)dλ(x)

Indeed, one is justified to write f(x) = dµX(x)
dλ(x) , i.e. we can in a certain sense see the density f

as the derivative of the probability measure µX with respect to the Lebesgue measure λ. Once

again expectation exists if both

E[g(X)+] =

∫
Ω

max(g(X(ω)), 0)dP (ω) =

∫
Rd

max(g(x), 0)dµX(x) <∞

E[g(X)−] =

∫
Ω
−min(g(X(ω)), 0)dP (ω) =

∫
Rd
−min(g(x), 0)dµX(x) <∞
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And, as used implicitly earlier, these two integrals are finite iff

E[|g(X)|] = E[g(X)+] + E[g(X)−] < +∞,

which is what we usually check.

Now importantly we can define any type of Lebesgue integral also with respect to complex

numbers, by just considering the real and imaginary part separately. So if g : Rd → C, then for

all x ∈ Rd

g(x) = <(g(x)) + ι=(g(x)),

with <(g(x)),=(g(x)) ∈ R the real and imaginary parts respectively. Then the integral of g exists

iff the ones of <(g(x)),=(g(x)) exist and

E[g(X)] =

∫
Rd
g(x)dµX(x) :=

∫
Rd
<(g(x))dµX(x) + ι

∫
Rd
=(g(x))dµX(x).

Note that this means in particular that the complex number E[g(X)] has <(E[g(X)]) = E[<(g(X))]

and =(E[g(X)]) = E[=(g(X))].

With this definition almost all properties of the integral generalize easily to the case of complex

valued functions. For instance, assume that X has a joint density fX and that

E[|g(X)|] =

∫
Rd
|g(x)|f(x)dx < +∞.

Then in particular E[|<(g(X))|] ≤ E[|g(X)|] < +∞ and in the same way E[|=(g(X))|] < +∞,

and we can use the Fubini theorem on the real and imaginary part separately to see that∫
Rd
g(x)f(x)dx =

∫
R
. . .

∫
R
g(x)f(x)dx1 . . . dxd

This in fact holds true even if X does not have a density with the general integral notation in

(70), as long as the measure of X is the product measure. However we only stated the Fubini

Theorem in terms of the Lebesgue integral, so we stick to this case. The preceding is used in

Theorem 4.9.

Now we are ready for the main definition:

Definition 4.4 (Definition 13.2 in Jacod and Protter (2004)). Let X : Ω → Rd be a random

vector. The characteristic function of X is the function φX : Rd → C defined as

φX(t) = E[exp(ιtTX)] =

∫
Rd

exp(ιtTx)dµX(x). (71)

We will now look at the properties of this new function and then give many examples:

Theorem 4.7. The integral in (71) (and thus the cf) always exists and |φX(t)| ≤ 1 for all t ∈ Rd,
with φ(0) = 1.
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Proof. First note that for the integral in (71) to make sense, we need for any t, the functions

x 7→ <(exp(ιtTx)) and x 7→ =(exp(ιtTx)) to be B(Rd)/B(R) measurable. But from Appendix A,

<(exp(ιtTx)) = cos(tTx), =(exp(ιtTx)) = sin(tTx),

which are continuous in x and in particular B(Rd)/B(R) measurable. Now, note that for any

t ∈ Rd:

E[| exp(ιtTX)|] =

∫
Rd
| exp(ιtTx)|dµX(x)

=

∫
Rd

1dµX(x)

= 1 <∞,

since | exp(ιy)| = 1 for all y ∈ R. However as mentioned above, then

E[|<(exp(ιtTX))|] ≤ E[| exp(ιtTX)|] = 1 < +∞

E[|=(exp(ιtTX))|] ≤ E[| exp(ιtTX)|] = 1 < +∞,

since for any z ∈ C, |<(z)| ≤ |z| and |=(z)| ≤ |z|. So indeed E[exp(ιtTX)] exists for any t ∈ Rd!
Then using the fact that (i) E[X]2 ≤ E[X2] (Jensen’s inequality) for any random variable X and

(ii) for any z ∈ C: |z|2 = <(z)2 + =(z)2, we have:

|φX(t)|2 = |E[exp(ιtTX)]|2

= <(E[exp(ιtTX)])2 + =(E[exp(ιtTX)])2

= E[<(exp(ιtTX))]2 + E[=(exp(ιtTX))]2

≤ E[<(exp(ιtTX))2] + E[=(exp(ιtTX))2]

= E[| exp(ιtTX)|2]

= E[12] = 1.

So indeed also |φX(t)| ≤ 1 for all t ∈ Rd. Furthermore, since exp(0) = 1 it holds that φX(0) =

E[exp(0)] = 1. �

One can also show that the function φX(t) is uniformly continuous in t (and thus in particular

continuous). However we will not need this fact here. What makes the characteristic function so

powerful for our purposes is the following theorem, which we will however not proof here:

Theorem 4.8 (Adaptation of Theorem 14.1 in Jacod and Protter (2004)). The cf completely

characterizes µX on (Rd,B(Rd)). In particular µX = µY iff φX(t) = φY(t) for all t ∈ Rd.

This has an immediate important corollary:

Theorem 4.9. The random variables X1, . . . , Xd are independent iff X = (X1, . . . , Xd)
T has cf

φX(t) =

d∏
i=1

φXi(ti). (72)
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Proof. We will show this in the case of X possessing a joint density f . However literally the same

proof can also be used to show this theorem for the general case (but for that it would have been

necessary to state the Fubini theorem in a more general form, for any measure instead of just the

Lebesgue measure):

First assume X1, . . . , Xd are independent, so that

fX(x) =

d∏
i=1

fXi(xi).

We start by considering the cf of X:

φX(t) = E[exp(ιtTX)]

= E

[
exp

(
ι

(
d∑
i=1

tiXi

))]

= E

[
d∏
i=1

exp (ιtiXi)

]
So far we did not use the independence assumption at all. Now we account for independence and

can once again use Fubini’s theorem on the real and imaginary parts of exp(ιtTx) separately to

split up the above expectation:

E

[
d∏
i=1

exp (ιtixi)

]
=

∫
Rd

exp(ιtTX)

d∏
i=1

fXi(xi)dx

=

∫
Rd
<(exp(ιtTX))

d∏
i=1

fXi(xi)dx + ι

∫
Rd
=(exp(ιtTX))

d∏
i=1

fXi(xi)dx

=

∫
R
. . .

∫
R

cos(tTx)
d∏
i=1

fXi(xi)dx1 . . . dxn + ι

∫
R
. . .

∫
R

sin(tTx)
d∏
i=1

fXi(xi)dx1 . . . dxn

=

∫
R
. . .

∫
R

exp(ιtTX)

d∏
i=1

fXi(xi)dx1 . . . dxn

=

∫
R
. . .

∫
R

d∏
i=1

exp (ιtixi) fXi(xi)dx1 . . . dxn

=
d∏
i=1

∫
R

exp (ιtixi) fXi(xi)dx1 . . . dxn

=

d∏
i=1

E[exp (ιtixi)] =

d∏
i=1

φXi(ti).

where we were able to use Fubini, because∫
Rd
| cos(tTx)|fX(x)dx ≤ 1 <∞∫

Rd
| sin(tTx)|fX(x)dx ≤ 1 <∞,
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as shown above.

On the other hand assume that (72) holds true. Then by the first step, the characteristic

function of X is equal to the one of Y, with Y having the independence distribution, µY =∏d
i=1 µXi . By Theorem 4.8 this means X

D
= Y, or the elements of X are independent. �

Example 19. The cf of a gamma distribution can be derived by using the infinite series expansion

of exp(itx):

exp(ιtx) =
∞∑
n=0

(ιtx)n

n!

(in fact this is how exp(itx) or exp(ιtTx) is properly defined). We will however not do this here

and just spoil the fun of the derivations by stating that

φX(t) = E[exp(ιtX)] = (1− βιt)−α ,

for X ∼ Gam(α, β). With this and the above, we immediately get the following nice result: If

Xi ∼ Gam(αi, β) are independent with the same scale parameter, then

n∑
i=1

Xi ∼ Gam(
n∑
i=1

αi, β).

Indeed we have that for X = (X1, . . . , Xn)T ,

φX(t) =

n∏
i=1

φXi(ti) =

n∏
i=1

(1− βιti)−αi

by independence. But then for w = (1, . . . , 1)T ,
∑n

i=1Xi = wTX and

φwTX(t) = E[exp(ιtwTX)] = φX(tw) =

n∏
i=1

(1− βιtwi)−αi = (1− βιt)−
∑n
i=1 αi ,

since wi = 1 for all i. But this is just the cf of a gamma distribution with parameters
∑n

i=1 αi, β.

By Theorem 4.8 this means that indeed the distribution of wTX is a gamma distribution with

said parameters, proving the claim. In particular, if Yi ∼ χ2
1 for all i = 1, . . . , n (if Yi = Z2

i with

Zi ∼ N(0, 1) for instance), then αi = 1/2 and βi = 2 for all i and thus,
∑n

i=1 Yi ∼ χ2
n, as claimed

in Section 3.2.4. ♦

In fact, linear transformations are no problem to handle for characteristic functions in general:

Theorem 4.10. Let X : Ω→ Rd be random vector with cf φX and Y : Ω→ Rp defined as

Y = a +AX,

for some a ∈ Rp and A ∈ Rp×d. Then for all t ∈ Rp

φY(t) = exp(ιtTa)φX(AT t).
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Proof. First note, as so often, Y is A/B(Rp) measurable as a B(Rd)/B(Rp) measurable function

of X. So Y is indeed a valid random vector and its cf is given as

φY(t) = E[exp(ιtTY)]

= E[exp(ι
(
tTa + tTAX

)
)]

= exp(ιtTa)E[exp(ιtTAX)]

= exp(ιtTa)φX(AT t).

�

As usual the preceding also holds if we only have

Ỹ
D
= a +AX,

since then Ỹ has the same distribution (and thus the same cf) as Y = a +AX.

Characteristic functions allow for some of the most central results in the case of independent

random variables. However they even are of great use, when there is dependence involved. To

exemplify this, we will derive and work with the cf of the multivariate Gaussian distribution.

Example 20. If µX = N(0, 1), the characteristic function is

φX(t) = exp(−t2/2). (73)

Despite its simple form, deriving this is unfortunately somewhat hard. See for instance, Jacod

and Protter (2004, p. 107) for a nice proof. However this expression forms the basis of the

interesting theorems. First of all, if µX = N(a, σ2), we immediately have that

φX(t) = exp(ιta) exp(−(t2σ2)/2) = exp(ιta− t2σ2/2) (74)

Theorem 4.11 takes this a step further and gives a multivariate version of (74). ♦

Theorem 4.11. The characteristic function for µX = N(a,Σ) is

φX(t) = exp(ιtTa− 1

2
tTΣt) (75)

In particular it is true that if X ∼ N(a,Σ), then for any w ∈ Rd \ {0},

wTX ∼ N(wTa,wTΣw),

i.e. every linear combination is univariate Gaussian again.

Proof. Recall the construction of the multivariate Gaussian: We start by taking d independent

N(0, 1) r.v. Z1, . . . , Zd and Z = (Z1, . . . , Zd)
T . Then we defined:

X
D
= a + Σ1/2Z.
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Thus Z ∼ N(0, I) has cf

φZ(t) =
d∏
i=1

φZi(ti) =
d∏
i=1

exp(−t2i /2) = exp

(
−1

2

d∑
i=1

t2i

)
= exp

(
−1

2
tT t

)
.

So that with Theorem 4.10:

φX(t) = exp(ιtTa)φZ((Σ1/2)T t)

= exp(ιtTa) exp

(
−1

2
((Σ1/2)T t)T (Σ1/2)T t

)
= exp

(
ιtTa− 1

2
tTΣ1/2(Σ1/2)T t

)
= exp

(
ιtTa− 1

2
tTΣt

)
.

Finally we can study the cf of wTX for some w ∈ Rd \ {0}:

φwTX(t) = E[exp(ιtwTX)]

= φX(tw)

= exp

(
ιtwTa− 1

2
t2wTΣw

)
.

This is the cf of a univariate Gaussian distribution with mean wTa and variance wTΣw, thus by

Theorem 4.8, wTX ∼ N(wTa,wTΣw). �

Remark 14. Actually we defined the Gaussian distribution in a way such that w = 0 would also

be possible, with 0TX ∼ N(0, 0). This is a degenerate Gaussian distribution, without density

and with all its mass on the point zero. However according to Definition 3.14 it would still be

valid, since 0 is still a positive definite matrix. ♦

Thus we identified a kind of stability condition: The condition that if X has a certain multi-

variate distribution, then wTX is of that distributional class as well. This is an extremely useful

property and does not hold in general. For instance if X has the independence distribution with

Xi ∼ Gam(αi, βi), i.e. with different scale terms βi, i = 1, . . . , d, then in fact wTX need not be

gamma, even if w = (1, . . . , 1)T . However the condition does extend to multivariate continuous

mixtures:

Theorem 4.12. Let X be a continuous multivariate mean-variance mixture, as in Definition

3.15, i.e.

X
D
= a + βG+

√
GΣ1/2Z,

with a,β ∈ Rd, Σ1/2 a positive definite matrix, G : Ω → R a continuous random variable with

nonnegative support and Z ∼ N(0, I) independent of G. Then the cf of X is given as

φX(t) = exp(ιtTa)φG(tTβ + ι
1

2
tTΣt). (76)
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Furthermore if w ∈ Rd \ {0}, then Y = wTX is in the same distributional class. More precisely,

Y is a univariate mean variance mixture with parameters wTa, wTβ, wTΣw, or:

Y
D
= wTa +GwTβ +G1/2

(
wTΣw

)1/2
Z,

with Z ∼ N(0, 1) and G,Z independent.

Proof. The first argument is again not completely rigorous, since we did not define conditional

expectation properly. Yet the argument itself is entirely correct: Using the law of iterated expec-

tations,

φX(t) = E[exp(ιtTX)]

= E[E[exp(ιtTX)|G]].

Now since the random vector M = X|G ∼ N(a + βG,GΣ), we have that the inner expectation

is given as:

E[exp(ιtTX)|G] = φM(t)

= exp(ιtT (a + βG)− 1

2
tTGΣt),

so that

φX(t) = E[exp(ιtTa + ιtTβG− 1

2
tTGΣt)]

= exp(ιtTa)E[exp((ιtTβ − 1

2
tTΣt)G)]

= exp(ιtTa)E[exp((ιtTβ + ι2
1

2
tTΣt)G)]

= exp(ιtTa)φG(tTβ + ι
1

2
tTΣt),

as claimed.

Now let w ∈ Rd \ {0}. The characteristic function of Y = wTX is found as usual:

φY (t) = E[exp(twTX)]

= φX(tw)

= exp(ιtwTa)φG(twTβ + ιt2
1

2
wTΣw)).

By comparison this is clearly the cf of a univariate mixture with parameters wTa, wTβ, wTΣw.

With Theorem 4.8 this also means the distribution of Y is said mixture. �

Example 21. If X ∼ N(a,Σ) or Y ∼ t(ν,a,Σ), then from Theorems 4.11 and 4.12 we have for

any linear combination:

wTX ∼ N(wTa,wTΣw)

wTY ∼ tν(wTa,wTΣw)
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for all w ∈ Rd \ {0}. If we for instance model logged asset returns with a multivariate Gaussian

or t distribution, we immediately know the distribution of a portfolio return as well (since a

portfolio is just a linear combination of assets). For portfolio optimization this is naturally a

highly desirable property. We will illustrate this here with an imperfect, but still illustrative

example: Let YT+1 be the returns of some set of d assets at T + 1. We aim to solve

min
w∈Bθ

V(wTYT+1), (77)

with Bθ = {w ∈ Rd : wT I = 1, wi ≥ 0, i ∈ {1, . . . ,K}}, where I is a d×1 vector of ones. Where is

this optimization problem coming from? Variance in this context can be understood as a measure

of risk and we would like to minimize this risk as far as possible with our choice of w. In fact it

would be better to minimize a far more sophisticated measure of risk, such as expected shortfall

(ES):

min
w∈Bθ

ESα(wTYT+1), (78)

for some α ∈ (0, 1). ES can be regarded as the expected loss at some level α. See for instance

McNeil et al. (2005) for details. However in case of elliptical distributions (which include both the

Gaussian and the multivariate t), it can be demonstrated that problems (77) and (78) yield the

same solutions. This is the reason we focus on the much simpler problem (77). The drawback from

an illustrative point of view is that we don’t really need Theorem 4.12 here, since V(wTYT+1) =

wTV(YT+1)w is always true, no matter what the distribution of YT+1 is. This changes however

once we leave the nice world of elliptical distributions, if we work with the MVG of Section 3.4.4

for instance. In this case we need to solve problem (78) and for that, it helps greatly to know

that wTYT+1 follows a variance gamma distribution if YT+1 is multivariate variance gamma!

Now, we assume to observe a sample of T returns of d assets, (Y1, . . . ,YT ) and take

(1) Yt
iid∼ N(a,Σ) for all t = 1, . . . , T

(2) Yt
iid∼ t(ν,a,Σ) for all t = 1, . . . , T .

In case (1) we estimate (a,Σ) as before as:

â = Ȳ =
1

T

T∑
i=1

Yt

Σ̂ =
1

T

T∑
i=1

(
Yt − Ȳ

) (
Yt − Ȳ

)T
.

Estimating the t distribution on the other hand is more difficult. Standard maximum likelihood is

not a good idea, since estimating a matrix Σ via numerical optimization is a nightmare. Instead

we use the following heuristic algorithm:23 We know from Theorem 4.12 (taking w to be one at

index i and zero everywhere else) that Yt,i
iid∼ tν(ai, σ

2
i ) for i = 1, . . . , d. Thus in the first step

23A very elegant and powerful solution to this estimation problem is the so called EM algorithm, which we will

however not discuss here.
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we simply fit a univariate t distribution (augmented with scale term σi and location ai) to each

univariate sample (Yt,i)
T
t=1 using maximum likelihood. This will result in different ν values for

each i (and to a loss in estimation efficiency). To counter this, we simply take the mean over all

νi, i.e. we estimate

ν̂ =
1

d

d∑
i=1

ν̂i,

where ν̂i are the estimates of ν for each component, obtained with maximum likelihood. This

method gives us an estimate of ν, a = (a1, . . . , ad)
T and the diagonal elements of Σ, σ2

1, . . . , σ
2
d.

Now to estimate the off-diagonal elements of Σ, we use a so called method-of-moment approach.

As we derived earlier for any i 6= j:

Cov(Yt,i, Yt,j) =
ν

ν − 2
σi,j for all t.

Now given an estimate of ν, ν̂, a simple idea is to just estimate Cov(Yt,i, Yt,j) with the consistent

estimator

1

T

T∑
t=1

(Yt,i − Ȳi)(Yt,j − Ȳj),

where Ȳi = 1/T
∑T

t=1 Yt,i and analogously with Ȳj . Given an estimate of the covariance, Ĉov(Yt,i, Yt,j)

say, we calculate

σ̂i,j = Ĉov(Yt,i, Yt,j)
ν̂ − 2

ν̂

Note that this only makes sense if ν̂ > 2.

Thus, given some returns data (Yt)
T
t=1, we have by assumption that also YT+1 ∼ N(a,Σ) in

case (1) and YT+1 ∼ t(ν,a,Σ) in case (2). We can then use the estimates obtained in a first step

to solve problem (77).

♦
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A Review of Complex numbers

The imaginary unit ι is defined to be “number” such that ι2 = −1. The set of all complex

numbers is

C := {a+ bι : a, b ∈ R},

and is closed under addition and multiplication:

(a+ bι) + (c+ dι) = (a+ c) + (b+ d)ι

(a+ bι)(c+ dι) = (ac− bd) + (bc+ ad)ι.

If z = a + bι, then <(z) := a and =(z) := b are the real and imaginary parts of z. We can also

define convergence on C by saying that a sequence (zn)n in C converges to z ∈ C if <(zn)→ <(z)

and =(zn)→ =(z) in R, as n goes to infinity.

The complex conjugate of z is z̄ = a−bι. The product zz̄ = (a+bι)(a−bι) = a2−b2ι2 = a2+b2

is always a non-negative real number. The sum is z + z̄ = (a + bi) + (a − bi) = 2a = 2Re(z).

The absolute value of z, or its (complex) modulus, is |z| = |a + bi| =
√
zz̄ =

√
a2 + b2. Short

calculations show that, for z1, z2 ∈ C,

|z1z2| = |z1||z2|, z1z2 = z̄1z̄2, |z1 + z2| ≤ |z1|+ |z2|.

The exponential function exp : C→ C is defined as

exp(z) =
∞∑
k=0

zk

k!
.

(This is in particular true for the special case z ∈ R.) As in the real case it holds that for

z1, z2 ∈ C, exp(z1 + z2) = exp(z1) exp(z2). Looking at the series expansion of sin : R → R and

cos : R→ R, one can determine the important relation:

exp(it) = cos(t) + ι sin(t), ∀t ∈ R. (79)

This is generally referred to as “Euler’s formula”. Using t = π, we have in particular exp(ιπ)+1 =

0, since cos(π) = −1 and sin(π) = 0. So for an arbitrary z ∈ C, z = a+ ιb, it holds that

exp(z) = exp(a+ ιb) = exp(a) exp(ιb) = exp(a)(cos(b) + ι sin(b)) = exp(a) cos(b) + ι exp(a) sin(b).

So we may say <(exp(z)) = exp(a) cos(b) and =(exp(a)) = exp(a) sin(b). Thus we can study the

complex conjugate:

exp(z) = exp(a) cos(b)− ι exp(a) sin(b) = exp(a)(cos(b)− ι sin(b))

= exp(a)(cos(b) + ι sin(−b)) = exp(a) exp(−ιb) = exp(a− ιb) = exp(z̄),

i.e. the complex conjugate of exp(z) ∈ C is exp(z̄) ∈ R. Very importantly we can also obtain the

following equality, for all t ∈ R:

| exp(it)| =
√
<(exp(ιt))2 + =(exp(ιt))2 =

√
cos(t)2 + sin(t)2 = 1, (80)

as a = 0 and thus exp(a) = 1 here and since for any t ∈ R: cos(t)2 +ι sin(t)2 = 1. This is basically

the reason that the characteristic function always exists.
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